
Introduction

Lecturer: Riccardo Corradin

1/64

General info

Welcome to Computational Statistics

Before starting, I gratefully acknowledge Tommaso Rigon. Most of the material presented in this

module is inspired (taken) by his former lecture notes and examples.

• This module is about computational methods

• Topics are divided in four macro blocks, namely

- Metropolis Hastings and Gibbs sampling

- Adaptive and dynamic-based methods

- Importance-based methods

- Approximate methods

• With all the methodologies, we will see also practical implementations

• All the material is available at

link here

• You can report comments and typos at

riccardo.corradin@unimib.it

2/64

Before starting

Inspired by the foundational talk of Art Owen at LMS Invited

Lecture Series, CRISM Summer School (2018), in order you have to

consider:

W
O
R
K
IN

G
O
R
D
E
R

1. Solutions from algebra

2. Solutions from calculus

3. Monte Carlo (MC) solutions

4. Approximate MC solutions

In the following lectures, we will address the last two points.

But remember! ”A big computer, a complex algorithm and a long

time does not equal science.” Robert Gentleman.

3/64

Monte Carlo: why?

Bayesian inference in (less than) a nutshell

• We usually observe X⊺ = (X1, . . . ,Xn) data, where the generic Xi has support (X,X), here

assumed to be regular enough. Each datum follows a shared distribution f (xi | θ), indexed
by an unknown parameter θ ∈ Θ ⊆ Rp .

• The empirical information is summarized by the likelihood function

L(X | θ) =
n∏

i=1

f (xi | θ).

• We usually set a prior distribution π(θ) for our unknown parameter θ.

• The core of our analysis is the posterior distribution resulting from a straightforward

application of Bayes’ theorem,

π(θ | X) =
L(X | θ)π(θ)∫

Θ L(X | θ)π(θ)dθ
.

• Except of few peculiar cases, the previous is not available in a closed form, as the
normalizing constant (i.e. the integral in the denominator term) is often intractable.

→ no analytical solutions

• Numerical solution such as numerical integration of the normalization constant are highly

unstable, especially in high dimensions or with multimodal distributions.

4/64

Bayesian inference in (less than) a nutshell

• The intuition beyond computational Monte Carlo methods for Bayesian inference is to

produce a sample from the posterior distribution and then use such sample to perform

posterior inference.

• If we can get random samples θ(1), . . . , θ(R) from the posterior distribution, then we can

approximate any (well posed) functional of interest as

E[g(θ) | X] ≈
1

R

R∑
r=1

g(θ(r)), θ(r) ∼ π(θ | X), r = 1, . . . ,R.

• The previous is justified by the law of large numbers.

• We mainly distinguish among two approaches

- When θ(1), . . . , θ(R) are independent samples from π(θ | X), we refer to the approach as Monte

Carlo method.

- When θ(1), . . . , θ(R) are dependent samples, and such dependence is driven by a Markov Chain, we

follow a Markov chain Monte Carlo (MCMC) approach.

5/64

Review of Markov chains

Markov chains

• A sequence of random elements Y (0),Y (1), . . . ,Y (R), where the generic Y (r) has support

(Y,Y), is a Markov chain if

P
(
Y (r+1) ∈ A | y (0), . . . , y (r)

)
= P

(
Y (r+1) ∈ A | y (r)

)
, for any A ⊆ Y.

• Dependence on the past is fully driven by the previous state Y (r).

• The conditional distribution of Y (r+1) | y (0), . . . , y (r) is then the same of Y (r+1) | y (r), and

such distribution is called transition kernel.

• Given an initial condition y (0), a Markov chain is fully characterized by its transition kernel,
which we assume does not depend on r (homogeneity).

→ However, its parameters may vary over time.

• In continuous cases, the transition kernel is identified by a conditional density function,

denoted with

k(y (r+1) | y (r)).

• When the sample space is finite, the transition kernel is a matrix, say P.

6/64

A first example: AR(1)

• Autoregressive processes provides a simple illustration of Markov Chains on continuous

state-space.

• Let Y (0) ∼ N(30, 1) and let us define

Y (r) = ρY (r−1) + ϵ(r), ρ ∈ R,

with the error terms ϵ(r) being iid according to a N(0, 1) distribution.

• The produced sequence {Y (r)}r≥0 is a first simple example of Markov chain.

• Thanks to the properties of the Gaussian distribution, it is also simple to write explicitly the

transition density function (
y (r) | y (r−1)

)
∼ N

(
ρy (r−1), 1

)
.

• When the dependence parameter |ρ| < 1, the Markov chain has a more stable behavior.

7/64

A first example: AR(1)

0 50 100 150 200 250 300

0
5

15
25

Index

y_
0

0 50 100 150 200 250 300

0
5

15
25

Index

y_
05

0 50 100 150 200 250 300

25
30

35
40

Index

y_
1

0 50 100 150 200 250 300

10
0

30
0

50
0

Index

y_
10

1

8/64

Invariant distribution

• An increased level of stability of a Markov chain occurs when the latter admits an invariant

or stationary probability distribution.

• A probability density h(y) is invariant for a Markov chain with kernel k if

h(y∗) =

∫
k(y∗, y)h(y)dy ,

hence, a functional defined through the kernel preserve the same distributional form for

h(y).

• This is to say that the marginal distributions of Y (r) and Y (r+1) are the same and are equal

to g(y), since they are different just for the number of kernel actions, although Y (r) and

Y (r+1) remain dependent.

• Roughly speaking, if a Markov chain admits a stationary distribution + some technical

conditions, then for R large enough, the chain “stabilizes” around the invariant law.

• In the previous AR(1) example the stationary distribution is N(0, 1/(1− ρ2)).

9/64

Invariant distribution

• Not every Markov chain admits a stationary law. However, Markov chains built for Bayesian

statistics should always converge to an invariant distribution.

• Indeed, in Markov Chain Monte Carlo, the stationary distribution h(y) represents the target

density from which we wish to simulate, usually the posterior distribution in Bayesian

inference.

• Then, we will make use of the following approximation∫
g(y)h(y)dy ≈

1

R

R∑
r=1

g(y (r)),

where y (1), . . . , y (R) are generated according to a Markov chain, with y (0) ∼ h(y).

• How to construct a Markov chain that converges to the desired density g(y)? Many

possible strategies, depending on specific problems.

• Before delving into this key problem, let us briefly review the assumptions under which this

approximation is reasonable.

10/64

Regularity conditions

• We will consider Markov chains that are irreducible, aperiodic, and Harris recurrent.

• A rigorous presentation of these properties is beyond the aims of this course, so we offer

only a brief description in the discrete case to help the intuition.

• For a more detailed treatment, see Chapter 6 of Robert and Casella (2004).

• Irreducibility. The chain is irreducible if it does not “get stuck” in a local region of the
sample space. In the discrete case, the chain is irreducible if all states are connected.

→ As intuition, in the continuous case, this happens if the kernel is smooth and for each point we are

mapping the entire support.

• Aperiodicity. The chain is aperiodic if it does not have any deterministic cycle.

• Harris recurrent. The chain is (Harris) recurrent if it visits any region of the sample space

“sufficiently often”.

11/64

Irreducibility

• The aforementioned properties are easy to formalize in the discrete setting, namely when

the values of the Markov chain are Y (r) ∈ {1, 2, ...}.

• The first passage time is the first r for which the chain is equal to j, namely:

τj = inf{r ≥ 1 : Y (r) = j},

where by convention we let τj =∞ if Y (r) ̸= j for every r ≥ 1.

• Moreover, let us denote the probability of return to j in a finite number of step, starting

from j ′

P(τj <∞ | y (0) = j ′).

• Hence, the chain is irreducible if P(τj <∞ | y (0) = j ′) > 0 for all j , j ′ ∈ N.

12/64

Aperiodicity

• Consider the two-state chain with transition matrix

P =

[
0 1

1 0

]
.

• With the previous matrix, if we have two states, say 1 and 2, the Markov chain induced by

P is alternating those two states

Pv r =

[
0 1

1 0

](
0

1

)
=

(
1

0

)
= v r+1, and Pv r =

[
0 1

1 0

](
1

0

)
=

(
0

1

)
= v r+1,

• The two-step ahead transition matrix is P2 = I , so P2r = I and P2r+1 = P for all r ≥ 1.

• Hence, due to periodicity this chain is failing to converge anywhere.

• In the discrete case, we call a state j aperiodic if the set

{r ≥ 1 : [Pr]jj > 0}

has no common divisor other than 1.

• A chain is aperiodic if all its states are aperiodic

13/64

Harris recurrence

• Informally, a state j of an irreducible Markov chain is recurrent when it is (expected to be)

visited by the chain “infinitely often”, i.e.

E[ηj] =∞, where ηj =
∑
r≥1

I[Y (r)=j].

• More formally, in the discrete setting a state j ∈ N is recurrent if and only if

P(τj <∞ | y (0) = j) = P(Y (r) = j for infinitely many r | y (0) = j) = 1.

• The above definition, with the necessary adjustments, is a sufficient condition for

recurrence in the continuous case.

• Indeed, in the continuous case recurrence is defined in terms of the average number of

passages on a Borel set, which must be divergent.

• The stronger Harris recurrence condition is mostly needed to fix measure-theoretic

pathologies.

14/64

Invariant measure

• A Markov chain that is aperiodic and Harris recurrent displays a quite stable behavior, so

one may wonder if it admits an invariant distribution.

• In general, the answer is no: the Gaussian random walk is an example.

• Indeed, we call Harris positive a Markov chain, which is Harris recurrent and admits an

invariant probability distribution.

• In the discrete case, this occurs if and only if E(τj | y (0) = j) <∞.

• However, something can be said about the existence of invariant measures in general.

Theorem

If {Y (r)}r≥1 is a recurrent chain, there exists an invariant σ-finite measure which is unique up to

a multiplicative factor.

• Unfortunately, such an invariant measure is not necessarily a probability measure!

15/64

Reversibility and detailed balance

• What follows is a popular sufficient condition to ensure a recurrent chain is also positive

recurrent. That is, it admits an invariant probability distribution.

• Interestingly enough, such a condition also has a quite intuitive interpretation.

• We call a Markov chain {Y (r)}r≥1 reversible if the distribution of Y (r) conditionally on

Y (r+1) is the same as the distribution of Y (r+1) conditionally on Y (r).

• A Markov chain {Y (r)}r≥1 with transition kernel k satisfies the detailed balance condition

if there exists a function such that

k(y | y∗)h(y) = k(y∗ | y)h(y∗).

Theorem

If {Y (r)}r≥1 satisfies the detailed balance condition with h a probability density function, then h

is the invariant (stationary) density, and the chain is reversible.

16/64

Convergence to equilibrium

• From now on, we will always assume the aperiodicity and Harris positivity properties,

assuming the existence of a stationary probability density h.

• The following result establishes that a chain converges in total variation to its invariant

measures as r →∞.

• Importantly, this occurs regardless the initial conditions Y (0) ∼ h0.

Theorem

Let the Markov chain {Y (r)}r≥1 be aperiodic and Harris positive, with Y (0) ∼ h0. Moreover let

hr be the marginal probability density of Y (r). Then

lim
r→∞

|hr (y)− h(y)|TV = 0.

Furthermore |hr (y)− h(y)|TV is decreasing in r .

17/64

Ergodic theorem

• The Ergodic Theorem is essentially the equivalent of the law of large numbers for Markov

chains. It is the main justification for using mcmc methods.

• What follows is a slightly simplified version, which is amenable for our purposes.

• Again, the following result holds irrespectively on the initial conditions Y (0) ∼ h0.

Theorem

Ergodic Theorem Let the Markov chain {Y (r)}r≥1 be Harris positive with stationary distribution

h. Let the function g be integrable w.r.t. to h. Then

1

R

R∑
r=1

g(Y (r))→
∫

g(y)h(y)dy , for r →∞,

almost surely.

18/64

Summary I

• Sampling the path of a Markov chain is straightforward from the definition.

• We firstly simulate Y (0) ∼ h0. Then we simulate the subsequent values (Y (r+1) | Y (r))

according to the transition kernel k, assuming it is easy to do so.

• If a Markov chain has a stationary distribution h, then simulating from a Markov chain also

leads to a practical strategy for simulating from h.

• Because of the previous results, the distribution hr of Y (r) will eventually converge to the

stationary law h we wish to simulate.

• Thus, Y (B), for B > 0 large enough can be regarded as a sample from h. Moreover, the

subsequent values can also be regarded as samples from h, the invariant distribution.

19/64

Summary II

• The values Y (1), . . . ,Y (B) represent the so-called burn-in period, namely the values the

chain needs to reach convergence.

• The burn-in values should be discarded. The choice of B is not always easy in practice

• Hence, the approximations of functionals of interest are based on the values∫
g(y)h(y)dy ≈

1

R − B

R∑
r=B+1

g(Y (r)),

which, once again, we emphasize it relies on the Ergodic Theorem.

• What we are still missing are some practical Markov chains algorithms that indeed target a

specific stationary distribution.

20/64

The Metropolis-Hastings

algorithm

Metropolis-Hastings algorithm I

• We are now ready to introduce our first Markov Chain Monte Carlo (MCMC) method: the

Metropolis-Hastings algorithm (MH).

• This idea goes back to Metropolis et al. (1953) and Hastings (1970).

• Like the acceptance-rejection algorithm, the MH is based on proposing values sampled from

an instrumental proposal distribution.

• The proposed values are then accepted with a certain probability that reflects how likely

they are from the target density h(y).

• Under mild conditions, this ensures that the chain will converge to the target density h(y),

which is the stationary distribution.

21/64

Metropolis-Hastings algorithm II

• Set the first value of the chain y (0) to some (reasonable) value.

At the rth value of the chain

i) Let y = y (r) be the current status of the chain. Sample y∗ from a proposal distribution

q(y∗ | y).

ii) Compute the acceptance probability, defined as

α(y∗, y) = min

{
1,

h(y∗)q(y | y∗)

h(y)q(y∗ | y)

}
= min

{
1,

h̃(y∗)q(y | y∗)

h̃(y)q(y∗ | y)

}

iii) With probability α(y∗, y), update the status of the chain and set y ← y∗.

• We remark that we do not need to know the normalizing constant K of h(y) = Kh̃(y)

because it simplifies in the above ratio.

22/64

Detailed balance and reversibility of the MH

• The transition kernel of the MH algorithm is therefore the following “mixture”

k(y∗ | y) = α(y∗, y)q(y∗ | y) + δy (y
∗)

∫
q(s | y)[1− α(s, y)]ds

where δy (y∗) is a point mass at y .

• Exercise I. Using the definition of the acceptance probability, verify the following condition:

h(y)α(y∗, y)q(y∗ | y) = h(y∗)α(y , y∗)q(y | y∗)

• Exercise II. From the above equations, conclude that

k(y | y∗)h(y) = k(y∗ | y)h(y∗)

corresponding to the detailed balance condition.

• Hence, h(y) is the stationary law of a MH process and the chain is reversible.

23/64

Detailed balance and reversibility of the MH

• The existence of an invariant stationary distribution is quite a strong theoretical result.

• However, one should also check for irreducibility, aperiodicity and Harris recurrence of the

MH chain.

• This depends on the proposal distribution q(y∗ | y) and the stationary density h(y),

although it is typically true under very mild conditions.

• Quite general sufficient conditions for ergodicity are given in Chapter 7.3.2 of Robert and

Casella (2004).

• Failure of MH algorithm typically occurs in presence of a disconnected support for h(y)

and/or if the proposal q(y∗ | y) is not able to explore the support of h(y).

24/64

Example: Gaussian distribution

• Suppose we wish to simulate from a Gaussian distribution N(µ, σ2) using a MH algorithm,

whose density is h(y).

• This is obviously a toy example, because in practice one would just use rnorm.

• For the proposal distribution q(y∗ | y), we can use a uniform random walk, namely

Y ∗ = y + U, with Y ∼ Unif (−ϵ, ϵ).

The choice of ϵ > 0 will impact the algorithm, as we shall see.

• Random walks are symmetric proposals distributions, so q(y∗ | y).

• This means the acceptance probability α is equal to

α(y∗, y) = min

{
1,

h(y∗)

h(y)

}

25/64

Example: Gaussian distribution

norm_mcmc <- function(R, mu, sig, ep, x0) {

Initialization

out <- numeric(R + 1)

out[1] <- x0

Beginning of the chain

x <- x0

Metropolis algorithm

for(r in 1:R){

Proposed values

xs <- x + runif(1, -ep, ep)

Acceptance probability

alpha <- min(dnorm(xs, mu, sig) / dnorm(x, mu, sig), 1)

Acceptance / rejection step

accept <- rbinom(1, size = 1, prob = alpha)

if(accept == 1) {

x <- xs

}

out[r + 1] <- x

}

out

}

26/64

Example: Gaussian distribution

0 200 400 600 800 1000

−
10

10
30

50

ep = 100

iteration

y

0 200 400 600 800 1000

−
10

10
30

50

ep = 50

iteration

y

0 200 400 600 800 1000

−
10

10
30

50

ep = 10

iteration

y

0 200 400 600 800 1000

0
10

30
50

ep = 1

iteration

y

27/64

Example: Gaussian distribution

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Series sim1

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Series sim2

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Series sim3

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Series sim4

28/64

Example: Gaussian distribution

Histogram of sim

sim

D
en

si
ty

−10 0 10 20

0.
00

0.
02

0.
04

0.
06

0.
08

Simulate the MH chain

sim <- norm_mcmc(50000, mu = 2, sig = 5, ep = 10, x0 = 50)

Identify a burn-in period

burn_in <- 1:200; sim <- sim[-c(burn_in)]

Plot the results

hist(sim, breaks = 100, freq = FALSE)

curve(dnorm(x, 2, 5), add = T) # This is usually not known!

29/64

Hybrid Metropolis-Hastings

• The actual advantage of mcmc over classical sampling methods is actually evident in high

dimensions. We consider Y (r) = (Y
(r)
1 , . . . ,Y

(r)
p).

• An option is to use the “vanilla” Metropolis-Hastings algorithm. However, the proposal

distribution is not easy to choose if p > 2. Unit B.1 is devoted to this issue.

• An alternative is using a “hybrid” Metropolis-Hastings algorithm. This scheme is also

known as Metropolis-within-Gibbs.

• The idea is quite simple: iteratively apply a Metropolis-Hastings update to each coordinate

Y
(r)
j , according to the proposal distributions qj (y

∗
j | yj).

• Sometimes, updating a block of coordinates rather than univariate components is

convenient.

• This algorithms is ergodic and has stationary distribution h(y), under mild conditions. This

should be taken for granted, e.g., Chapter 10.3.3 of Robert and Casella (2004).

30/64

Example: bivariate Gaussian

• Suppose we aim at simulating from a bivariate Gaussian distribution whose density is

h(y1, y2) =
1

2π
√

(1− ρ2)
exp

{
−

1

2(1− ρ2)
(y2

1 − 2ρy1y2 − y2
2)

}

Density of a bivariate Gaussian (up to a proportionality constant)

dbvnorm <- function(x, rho) {

exp(-(x[1]^2 - 2 * rho * x[1] * x[2] + x[2]^2) / (2 * (1 - rho^2)))

}

• For the proposal distributions qj (y
∗
j | yj), we can again use a uniform random walk, namely

y∗
j = yj + Uj , U ∼ Unif (−ϵj , ϵ), j = 1, 2.

• As before, the choice of j affects the performance of the MH.

31/64

Example: bivariate Gaussian

Hybrid Metropolis (Metropolis-within-Gibbs)

bvnorm_mcmc <- function(R, rho, ep, x0) {

out <- matrix(0, R + 1, 2)

out[1,] <- x0

x <- x0

for(r in 1:R){

for(j in 1:2){

xs <- x

xs[j] <- x[j] + runif(1, -ep[j], ep[j])

Acceptance probability

alpha <- min(dbvnorm(xs, rho) / dbvnorm(x, rho), 1)

Acceptance / rejection step

accept <- rbinom(1, size = 1, prob = alpha)

if(accept == 1) {

x[j] <- xs[j]

}

}

out[r + 1,] <- x

}

out

}

32/64

Example: bivariate Gaussian

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

sim[,1]

si
m

[,2
]

• Hybrid mh algorithm targeting the stationary density of a bivariate normal with correlation

ρ = 0.8, with starting point (10, 10).

33/64

MCMC with Bayes

Metropolis-Hastings algorithm in Bayesian statistics

• The Metropolis-Hastings (MH) algorithm is especially useful for Bayesian inference. In the

following, we rephrase the MH using the Bayesian notation.

• Usually, we are interested to sample from the posterior distribution of a parameter π(θ | X).

• Set the first value of the chain θ(0) to some (reasonable) value.

At the rth value of the chain

i) Let θ = θ(r) be the current status of the chain. Sample θ∗ from a proposal distribution

q(θ∗ | θ).

ii) Compute the acceptance probability, defined as

α(θ∗, θ) = min

{
1,

π(θ∗ | X)q(θ | θ∗)
π(θ | X)q(θ∗ | θ)

}
= min

{
1,

π(θ∗)L(X | θ∗)q(θ | θ∗)
π(θ)L(X | θ)q(θ∗ | θ)

}
iii) With probability α(y∗, y), update the status of the chain and set y ← y∗.

34/64

Gibbs sampling

• We now introduce another Markov Chain Monte Carlo method: the Gibbs Sampling.

• We still wanna sample from the posterior distribution π(θ | X) of θ ∈ Θ ⊆ Rp , given the

data.

• Let us partition the parameter vector θ = (θ1, . . . , θL) into L blocks of parameters, with

L ≤ p number of parameters.

• Evenutally, we can have as many blocks as parameters, so that θ = (θ1, . . . , θp).

• Let π(θℓ | −) be the so-called full-conditional of θℓ, that is

π(θℓ | −) = π(θℓ | X , θ1, . . . , θℓ−1, θℓ+1, . . . , θL), ℓ = 1, . . . , L,

namely the conditional distribution of θℓ given the data and the other parameters.

• Repeatedly sampling θℓ, for ℓ = 1, ..., L, from the corresponding full conditionals leads to a

mcmc algorithm targeting the posterior distribution π(θ | X).

35/64

Gibbs sampling

• The Gibbs sampler is a special case of hybrid Metropolis-Hastings, in which the full

conditionals are used as proposal distribution.

• The general hybrid MG is indeed often called Metropolis-within-Gibbs.

• Suppose that θ = (θ1, . . . , θp). We propose a value updating the jth component, with

θ∗ = (θ1, . . . , θ∗ℓ , . . . , θp).

• The distribution we want to sample from is the joint posterior

π(θℓ,θ−ℓ | X).

• In addition, note that the acceptance probabilities of the hybrid MH algorithm are

αj = min

{
1,

π(θ∗ | X)q(θℓ | θ∗ℓ)
π(θ | X)q(θ∗ℓ | θℓ)

}
= min

{
1,

π(θ∗ℓ ,θ−ℓ | X)π(θℓ | X ,θ−ℓ)

π(θℓ,θ−ℓ | X)π(θ∗ℓ | X , θ−ℓ)

}
= 1.

36/64

Gibbs sampling

• The acceptance rate of the Gibbs sampler is uniformly equal to 1.

• The use of a Gibbs sampler requires the knowledge of the full-conditional distributions,

from which we should be able to sample.

• The Gibbs sampling is “automatic”, in the sense that there are no tuning parameters that

we need to choose, which is both good and bad news.

• Ergodicity and convergence to the posterior stationary distribution are ensured under very

mild conditions, i.e. requiring the connectedness of the support.

• The Hammersley-Clifford theorem implies that a sufficiently regular joint density can be

expressed as a function of the full conditionals.

37/64

Example: conditionally-conjugate Gaussian model

• Let us assume the observations x1, . . . , xn are draws from

Xi | µ, σ2 iid∼ N(µ, σ2)

with independent priors µ ∼ N(m0, λ
2
0) and σ2 ∼ IG(a0, b0).

• The full conditional of the mean µ is

µ | − ∼ N(mn, λ
2
n), mn = λ2

n

(
m0

λ2
0

+
1

σ2

n∑
i=1

xi

)
, λ2

n =

(
n

σ2
+

1

λ2
0

)−1

.

• The full conditional of the variance σ2 is

σ2 | − ∼ IG(an, bn), an = a0 +
n

2
, bn = b0 +

n∑
i=1

(xi − µ)2.

38/64

Example: conditionally-conjugate Gaussian model

gibbs_R <- function(x, mu_mu, sigma2_mu, a_sigma, b_sigma, R, burn_in) {

Initialization

n <- length(x); xbar <- mean(x)

out <- matrix(0, R, 2)

Initial values for mu and sigma

sigma2 <- var(x); mu <- xbar

for (r in 1:(burn_in + R)) {

Sample mu

sigma2_n <- 1 / (1 / sigma2_mu + n / sigma2)

mu_n <- sigma2_n * (mu_mu / sigma2_mu + n / sigma2 * xbar)

mu <- rnorm(1, mu_n, sqrt(sigma2_n))

Sample sigma2

a_n <- a_sigma + 0.5 * n

b_n <- b_sigma + 0.5 * sum((x - mu)^2)

sigma2 <- 1 / rgamma(1, a_n, b_n)

Store the values after the burn-in period

if (r > burn_in) {

out[r - burn_in,] <- c(mu, sigma2)

}

}

out

}

39/64

Example: bivariate Gaussian

0 2000 6000 10000

0.
5

1.
5

Iterations

Trace of var1

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

Density of var1

N = 12000 Bandwidth = 0.0386

0 2000 6000 10000

1
2

3
4

Iterations

Trace of var2

1 2 3 4

0.
0

0.
4

0.
8

Density of var2

N = 12000 Bandwidth = 0.06143

40/64

Good practice

Implementation of mcmc

• Here we focus on practical considerations concerning the implementation with R.

• Higher performance can be achieved using C++ and the Rcpp package (see later).

• This is far from a comprehensive guide about R programming. We will consider a specific

model, and we will implement the relevant code in R.

What about BUGS / JAGS / Stan?

• If the performance is not a concern, Stan-like software is a handy tool for practitioners who

wish to implement standard Bayesian models.

• Conversely, any non-standard or novel model, i.e., those usually developed by researchers in

statistics, may be difficult or even impossible to implement.

• Besides, the “manual” implementation is very useful to gain insights about the model itself

and it facilitates a lot the debugging process

41/64

Example II: Weibull model for censored data

• We consider an example from survival analysis, i.e., the data are survival times, which may

be censored.

• In this example, we assume that the survival times are iid random variables following a

Weibull distribution Weib(γ, β).

• The observed survival time ti is either complete (di = 1) or right censored (di = 0),

meaning that the survival time is higher than the observed ti .

• The hazard and survival functions of a Weibull distribution are

h(t | γ, β) =
γ

β

(
t

β

)γ−1

, S(t |, γ, β) = exp

{
−
(

t

β

)γ}
.

• Recall that the density function is obtained as f (t | γ, β) = h(t | γ, β)S(t | γ, β).

42/64

Likelihood function

• The likelihood for this parametric model, under suitable censorship assumptions, is

proportional to the following quantity

L(t, d | γ, β) ∝
n∏

i=1

h(ti | γ, β)di S(ti | γ, β) =
∏

i :di=1

f (ti | γ, β)
∏

i :di=0

S(ti | γ, β)

with θ = (γ, β) being the parameter vector.

• When performing (Bayesian) inference, note that the likelihood is always defined up to an

irrelevant normalizing constant, not depending on the parameters θ.

• These irrelevant constants can and should be omitted when performing computations,

especially if they are expensive to evaluate.

43/64

Bad implementation I (use the log-scale)

• In our experiments, we make use the stanford2 dataset of the survival package.

• In the first place, we need to implement the log-likelihood function, say loglik.

• The following implementation of the log-likelihood is correct, but numerically unstable.

loglik_inaccurate <- function(t, d, gamma, beta) {

hazard <- prod((gamma / beta * (t / beta)^(gamma - 1))^d)

survival <- prod(exp(-(t / beta)^gamma))

log(hazard * survival)

}

Evaluate the log-likelihood at the point (0.5, 1000)

loglik_inaccurate(t, d, gamma = 0.5, beta = 1000)

[1] -Inf

• The product of several terms close to 0 leads to numerical inaccuracies ⇒ use the log-scale

instead.

44/64

Bad implementation II (initialize the output)

• This second coding attempt relies on the log scale and is numerically much more stable

than the previous version.

• However, this implementation is inefficient ⇒ do not increase objects’ dimension.

lloglik_inefficient2 <- function(t, d, gamma, beta) {

n <- length(t) # Sample size

log_hazards <- NULL

log_survivals <- NULL

for (i in 1:n) {

log_hazards <- c(log_hazards, d[i] * ((gamma - 1) *

log(t[i] / beta) + log(gamma / beta)))

log_survivals <- c(log_survivals, -(t[i] / beta)^gamma)

}

sum(log_hazards) + sum(log_survivals)

}

Evaluate the log-likelihood at the point (0.5, 1000)

loglik_inefficient2(t, d, gamma = 0.5, beta = 1000)

[1] -873.3299

45/64

Bad implementation III (avoid for loops)

• This third attempt avoids the previous pitfalls, but it is still quite inefficient ⇒ use

vectorized code whenever possible.

lloglik_inefficient1 <- function(t, d, gamma, beta) {

n <- length(t) # Sample size

log_hazards <- numeric(n)

log_survivals <- numeric(n)

for (i in 1:n) {

log_hazards[i] <- d[i] * ((gamma - 1) * log(t[i] / beta) + log(gamma / beta))

log_survivals[i] <- -(t[i] / beta)^gamma

}

sum(log_hazards) + sum(log_survivals)

}

Evaluate the log-likelihood at the point (0.5, 1000)

loglik_inefficient1(t, d, gamma = 0.5, beta = 1000)

[1] -873.3299

46/64

Good implementation

• The following version is both numerically stable and efficient.

loglik <- function(t, d, gamma, beta) {

log_hazard <- sum(d * ((gamma - 1) * log(t / beta) + log(gamma / beta)))

log_survival <- sum(-(t / beta)^gamma)

log_hazard + log_survival

}

Evaluate the log-likelihood at the point (0.5, 1000)

loglik(t, d, gamma = 0.5, beta = 1000)

[1] -873.3299

• All these versions of loglik run in fractions of seconds. However, the loglik function must

be executed, i.e., ∼ 105 times within a MH algorithm.

• Moreover, several instances of these inefficiencies in more complex models add up.

47/64

Benchmarking the code

• To understand which function works better, you need to test its performance.

• There exist specialized packages to do so, i.e. R rbenchmark or microbenchmark.

• These packages execute the code several times and report the average execution time.

• The column “elapsed” refers to the overall time (in seconds) over 1000 replications.

library(rbenchmark) # Library for performing benchmarking

benchmark(

loglik1 = loglik(t, d, gamma = 0.5, beta = 1000),

loglik2 = loglik_inefficient1(t, d, gamma = 0.5, beta = 1000),

loglik3 = loglik_inefficient2(t, d, gamma = 0.5, beta = 1000),

columns = c("test", "replications", "elapsed", "relative"),

replications = 1000

)

test replications elapsed relative

#1 loglik1 1000 0.014 1.000

#2 loglik2 1000 0.079 5.643

#3 loglik3 1000 0.412 29.429

48/64

A matter of style

• Formatting your code properly is a healthy programming practice.

• You can refer to https:// style . tidyverse .org for a comprehensive overview of good

practices in R.

• Quoting the tidyverse style guide: “Good coding style is like correct punctuation: you can

manage without it, butitsuremakesthingseasiertoread”.

• The styler R package automatically restyles your code for you, and it is integrated within

RStudio as an add-in.

Good

x <- 5

Bad

x = 5

49/64

Reparametrizations I

• When performing (Bayesian) inference, the choice of the parametrization strongly impacts

computations.

• General advice: perform computations on the most convenient parametrization and then

transform back the obtained samples.

• As a rule of thumb, you should use parametrizations with unbounded domains. This

facilitates the choice of proposal distributions and could also improve the mixing.

• In our model, the two parameters γ, β are strictly positive. Hence, a common strategy is to

consider their logarithm, i.e., θ = (θ1, θ2) = (log(γ) log(β)).

To log or not to log?

Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. Journal of Computa-

tional and Graphical Statistics, 18(2), 349–367.

50/64

Reparametrizations II

• When reparametrizations are involved, there are two possible modeling strategies. Choose

the prior before the reparametrization. In our setting, we could let for example

γ ∼ Ga(0.1, 0.1), β ∼ Ga(0.1, 0.1).

If you do so, remember to include the jacobian of the transformation when considering the

transformed posterior!

• Choose the prior after the reparametrization. In our setting, we could let for example

θ1 = log(γ) ∼ N(0, 100), θ2 = log(β) ∼ N(0, 100).

• This strategy is more straightforward as it avoids the extra step of computing the jacobian.

logprior <- function(theta) {

sum(dnorm(theta, 0, sqrt(100), log = TRUE))

}

logpost <- function(t, d, theta) {

loglik(t, d, exp(theta[1]), exp(theta[2])) + logprior(theta)

}

51/64

The MH implementation

• Since the space of θ is unbounded, it is reasonable to select a Gaussian random walk as

proposal distribution, namely

(θ∗ | θ) ∼ N2(0, 0.25
2I2).

The choice of the variance will be discussed in the next slides block.

• Gaussian random walks are symmetric proposals distributions, implying that

q(θ | θ∗) = q(θ∗ | θ)

which means that their ratio can be simplified (= 1) when computing the acceptance

probability α.

• Compute α using the log scale to avoid numerical instabilities.

• Unfortunately, there is no way to avoid for loops, which are highly inefficient ⇒ This

justifies the usage of Rcpp and RcppArmadillo.

52/64

Metropolis-Hastings code

RMH <- function(R, burn_in, t, d) {

out <- matrix(0, R, 2) # Initialize an empty matrix to store the values

theta <- c(0, 0) # Initial values

logp <- logpost(t, d, theta) # Log-posterior

for (r in 1:(burn_in + R)) {

theta_new <- rnorm(2, mean = theta, sd = 0.25) # Propose a new value

logp_new <- logpost(t, d, theta_new)

alpha <- min(1, exp(logp_new - logp))

if (runif(1) < alpha) {

theta <- theta_new; logp <- logp_new # Accept the value

}

if (r > burn_in) {

out[r - burn_in,] <- theta # Store the values after burn-in

}

}

out

}

Executing the code

library(tictoc) # Library for "timing" the functions

tic()

fit_MCMC <- RMH(R = 50000, burn_in = 5000, t, d)

toc()

0.92 sec elapsed

53/64

Example: bivariate Gaussian

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Time

S
ur

vi
va

l f
un

ct
io

n

• Posterior mean of the survival function with pointwise 95% credible intervals.
54/64

Rcpp & RcppArmadillo

Efficient implementation

• The Rcpp package simplifies the interface between R and C++.

• The package RcppArmadillo extends Rcpp and simplifies the interface between R and

armadillo , which is a “high quality linear algebra library for the C++ language, aiming

towards a good balance between speed and ease of use”.

• The main advantage is that C++ code is usually much faster than R (and python),

especially in non-vectorized settings.

• It is tough to be faster than Rcpp, unless your code is written in C++.

55/64

Basic usage

• Nowadays, both packages (Rcpp and RcppArmadillo) are very well integrated within

RStudio.

56/64

Basic usage

• First, create an empty file, say foo.cpp, containing the C++ code.

• Save the C++ file and compile it using the sourceCpp function. Alternatively, you can press

the “source” button using RStudio.

• Use the functions contained in the C++ file within R as usual. The functions will appear in

the environment.

57/64

The sum function in RcppArmadillo

include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

using namespace Rcpp;

using namespace arma;

// [[Rcpp::export]]

double arma_sum(vec x){

double sum = 0;

int n = x.n_elem; // Length of the vector x

for(int i=0; i < n; i++){

sum += x[i]; // Shorthand for: sum = sum + x[i];

}

return(sum);

}

sourceCpp("../cpp/sum.cpp")

x <- c(10, 20, 5, 30, 21, 78, pi, exp(7))

arma_sum(x) # sum of the vector x

[1] 1263.775

sum(x) # sum of the vector x - usual command

[1] 1263.775

58/64

Example I: Euclidean distance

• The R code is typically slow in presence of (nested) for loops.

• We are given a matrix X of dimension n × p, whose rows are xi = (xi1, . . . , xip)
⊺.

• We are interested in computing the matrix of Euclidean distances D of dimension n × n

whose entries are equal to

di,k =

√√√√ p∑
j=1

(xij − xkj)2, i , k ∈ {1, . . . , n}.

R_dist <- function(X) {

n <- nrow(X)

D <- matrix(0, n, n) # Pre-allocate the output

for (i in 1:n) {

for (k in 1:i) {

D[i, k] <- D[k, i] <- sqrt(sum((X[i,] - X[k,])^2))

}

}

D

}

59/64

Example I: Euclidean distance

• The corresponding RcppArmadillo o implementation is quite simple as well.

include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

using namespace Rcpp;

using namespace arma;

// [[Rcpp::export]]

mat arma_dist(const mat& X){

int n = X.n_rows;

mat D(n, n, fill::zeros); // Allocate a matrix of dimension n x n

for (int i = 0; i < n; i++) {

for(int k = 0; k < i; k++){

D(i, k) = sqrt(sum(pow(X.row(i) - X.row(k), 2)));

D(k, i) = D(i, k);

}

}

return D;

}

60/64

Example I: Euclidean distance

• Let us use the USArrests dataset for a quick benchmark.

• The RcppArmadillo implementation is about 150 times faster than the naive R version due

to the presence of nested for loops.

• Actually, the RcppArmadillo version is slightly faster the dist built-in R function!

X <- as.matrix(USArrests) # Example dataset

benchmark(

arma_dist = arma_dist(X), # Armadillo implementation

R_dist = R_dist(X), # Naive R implementation

dist = as.matrix(dist(X)), # Built-in R function (C++)

columns = c("test", "replications", "elapsed", "relative"),

replications = 1000

)

test replications elapsed relative

#1 arma_dist 1000 0.015 1.000

#2 dist 1000 0.080 5.333

#3 R_dist 1000 2.445 163.000

61/64

Example II: linear models

• R R code is not necessarily slower than Armadillo when linear algebra is involved.

• The RcppArmadillo implementation is about 150 times faster than the naive R version due

to the presence of nested for loops.

• Suppose we are interested in obtaining the least squares estimate β̂ from the design matrix

X and the response y , namely β̂ = (XX⊺)−1X⊺y .

• In the first place, let us compare two slightly different R implementations.

• As a rule of thumb, do not invert matrices if the goal is solving linear systems

Using matrix multiplication commands

lm_coef1 <- function(X, y) {

solve(t(X) %*% X) %*% t(X) %*% y

}

Better (no matrix inversion!) and faster implementation

lm_coef2 <- function(X, y) {

solve(crossprod(X), crossprod(X, y))

}

62/64

Example II: linear models

• The solve function here can be used directly on the objects X and y .

include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

using namespace Rcpp;

using namespace arma;

// [[Rcpp::export]]

vec lm_coef3(const mat& X, const vec& y) {

vec coef = solve(X, y);

return(coef);

}

set.seed(123)

X <- cbind(1, rnorm(10^4))

y <- rowSums(X) + rnorm(10^4)

cbind(lm_coef1(X, y), lm_coef2(X, y), lm_coef3(X, y)) # Same results

[,1] [,2] [,3]

[1,] 0.9909079 0.9909079 0.9909079

[2,] 1.0060394 1.0060394 1.0060394

63/64

Example II: linear models

benchmark(R_matrix_inv = lm_coef1(X, y),

R_no_matrix_inv = lm_coef2(X, y),

Rcpp = lm_coef3(X, y),

lm = coef(lm(y ~ X, data = cars)),

columns = c("test", "replications", "elapsed", "relative"),

replications = 1000

)

test replications elapsed relative

1 R_matrix_inv 1000 0.365 3.724

2 R_no_matrix_inv 1000 0.098 1.000

3 Rcpp 1000 0.141 1.439

4 lm 1000 2.487 25.378

• In this case, the RcppArmadillo implementation is approximately as fast as the R version.

• Indeed, the “difficult” part (i.e., solution of the linear system) in all cases is handled by

well-optimized C routines.

• The usual lm R functions are slower, but it is calculating many additional quantities.

64/64

	Monte Carlo: why?
	Review of Markov chains
	The Metropolis-Hastings algorithm
	MCMC with Bayes
	Good practice
	Rcpp & RcppArmadillo

