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Welcome back importance sampling

• Importance sampling is one of the most commonly used Monte Carlo methods, which often

can simplify complex problem by resorting to instrumental distributions.

• We assume the usual setting, where we want to produce a sample from the posterior

distribution of θ | X , where θ ∈ Θ ⊆ Rp is the parameter of interest, X ∈ Xn denotes the

observed data, with X ∈ Rd .

• As usual π(θ | X ) ∝ L(X | θ)π(θ) the density function of the posterior distribution.

• Recall that, in a Monte Carlo setting, we want to estimate

Eθ|X [g(θ)] =

∫
Θ
g(θ)π(θ | X )dθ,

by resorting to a sampling procedure

1

R

R∑
r=1

g(θ(r)), θ(r) iid∼ π(θ | X ).

• Importance sampling, among other motivations, is a suitable sampling strategy when we can

easily evaluate the density function θ | X , but it is difficult to sample from such a

distribution.
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Rejection sampler, an old friend

• We recall one of the basic Monte Carlo sampler, the rejection sampler.

• Suppose we want to sample from π(θ | X ) using an auxiliary distribution h(θ). With

rejection sampling we can produce a sample as follows.

At the rth sampling step

i) We generate θ(r) iid∼ h(θ) (independent of the previous state).

ii) Accept θ(r) with probability

π(θ(r) | X )

Kh(θ(r))
, with K ≥ max

θ

π(θ(r) | X )

h(θ(r))
,

otherwise go back to i).

• Here we still have to evaluate the likelihood function, we can extend this algorithm

accommodating for synthetic data.

• The support of h(·) should cover the support of π(θ(r) | X ).

3/23



Normalised importance sampling

• Importance sampling get advantage of knowing another density function, say q(θ), for

which π(θ | X ) ≪ q(θ).

• In practice, we use the distribution q(θ) to sample, but we also exploit its relation with the

targed distribution.

• The crucial part associated with importance sampling (IS) is summarized in the following

identity ∫
Θ
g(θ)π(θ | X )dθ =

∫
Θ
g(θ)

π(θ | X )

q(θ)
q(θ)dθ,

where w(θ) = π(θ|X )
q(θ)

is called the importance weight function.

• The previous identity holds if q(θ) > 0 whenever g(θ)π(θ | X ) > 0.

• This justify the use of the following Monte Carlo estimator∫
Θ
g(θ)π(θ | X )dθ ≈

1

R

R∑
r=1

w(θ(r))g(θ(r)), w(θ) =
π(θ | X )

q(θ)
, θ(r) iid∼ q(θ).
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Accuracy of IS

• For a generic unbiased Monte Carlo estimator,

MSEπ

(
1

R

R∑
r=1

g(θ(r))

)
=

1

R
Varπ(g(θ)).

• The IS estimator is unbiased, since

Eq

[
1

R

R∑
r=1

w(θ(r))g(θ(r))

]
= Eπ[g(θ)].

• The MSE committed while doing IS is equal to

MSE

(
1

R

R∑
r=1

w(θ(r))g(θ(r))

)
=

1

R
Varq(w(θ)g(θ)).

• The IS estimator is much useless if Eq [w(θ)2g(θ)2] < ∞ does not hold.

• A sufficient condition is that w(θ) is upper bounded in θ.
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Optimal IS

• Among all the possible importance distribution, we can find an optimal one which maximize

the accuracy of the sampler.

Theorem

The MSE of the normalized IS estimator of Eπ[g(θ)] is minimized by

q̃(θ) =
π(θ | X )|g(θ)|∫

Θ|g(θ)|π(θ | X )dθ
.

• Unfortunately, the previous is quite useless given that we need to compute the denominator,

which contains a similar functional to the one we try to avoid.

• In practice, we want the proposal distribution to be close as possible to π(θ | X ) within a

class of tractable distribution.

• Further, we can tune the proposal distribution depending on specific functional we are

considering.
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IS in practice

• One of the main application of IS is when we are interested on specific functional of the

posterior distribution.

• For example, if we want to integrate distributional tails with extreme quantiles, associated

to rare event probabilities.

Suppose we want to quantify the probability mass that a standard Gaussian distribution π(θ | X )

is leaving on the right tail, after the value θ = 10, i.e. 1−Φ(10). Hence, the functional of interest

is given by g(θ) = ϕ(θ)1[θ>10]. Resorting to other samplers, the accuracy on the tail is quite low

since is rare to sample values on that part of the support.

With a generic IS the accuracy can also be quite low. A more smart proposal distribution concen-

trate the effort in the relevant part of the support. Hence, we can consider an IS with

q(θ) = λe−λ(θ−c)1[θ≥c],

where all the sampling is concentrated on relevant part of the support, and then weighted by

w(θ) =
π(θ | X )

q(θ)
,

the ratio between the density function of a gaussian distribution and a shifted exponential distri-

bution.
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Auto-normalised importance sampling

• In practice, the posterior distribution of interest is usually known up to a normalization

constant. But usually, we can easily evaluate

π(θ,X ) = L(X | θ)π(θ).

• Similarly, let us consider q(θ) = q̃(θ)/Cq , with Cq being the normalization constant of q̃(θ).

• The IS works also up to normalization constants of both target distribution and proposal

distribution, since

∫
Θ
g(θ)π(θ | Xdθ) =

∫
Θ g(θ)π(θ|X )

q(θ)
q(θ)dθ∫

Θ
π(θ|X )
q(θ)

q(θ)dθ
=

∫
Θ g(θ) π̃(θ|X )

q̃(θ)
q(θ)dθ∫

Θ
π̃(θ|X )
q̃(θ)

q(θ)dθ
,

which leads to the following Monte Carlo estimator

Eπ[g(θ)] ≈
∑R

r=1 w(θ(r))g(θ(r))∑R
r=1 w(θ(r))

, w(θ) =
π̃(θ | X )

q(θ)
, θ(r) iid∼ q.

8/23



A formal viewpoint of IS

• Instead of thinking as density function π(θ | X ) and q(θ), we can view the IS in terms of

probability measure P and Q.

• We assume P ≪ Q.

• For any test function g(·), we denote the expectation w.r.t. P as P(g) :=
∫
Θ g(θ)Q(dθ).

• Recall that the potentially un-normalized Radon-Nikodym derivative between P and Q is

given by

w(θ) ∝
P(dθ)
Q(dθ)

,

meaning that

P(A) =
∫
A
w(θ)Q(dθ), ∀A ⊆ Θ.

Theorem

Let w(θ) ∝ P(dθ)/Q(θ). Then, for any test function g, we have

Q(gw) = P(g)Q(w).
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A formal viewpoint of IS

• In force of the previous identity, we can rethink at the IS as a change of measure, where we

are changing from Q to P.

• From the previous identity,

Q(gw) = P(g)Q(w),

we have the following estimator of P(g)

P(g) ≈
R∑

r=1

W (r)g(θr ), W (r) =
w(θr )∑R
r=1 w(θr )

, θr ∼ Q.

• We can interpret the estimator as the expectation of g w.r.t. the random probability

measure

PR(dθ) =
R∑

r=1

W (r)δθr (dθ), θr ∼ Q.

• PR is called the particle approximation of P, while we refer to {θr ,W (r)}Rr=1 as a weighted

sample.

• Weak convergence hold, for which PR ⇒ P.
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Measuring IS performance

• Similarly to what we have done with MCMC, we can assess the behavior of IS resorting to

the effective sample size.

• For IS, it can be expressed in a closed form as

ESS({W (r)}Rr=1) =
1∑R

r=1(W
(r))2

=

[∑R
r=1 w(θr )

]2
∑R

r=1 w(θr )2
,

where ESS({W (r)}Rr=1) ∈ [1,R].

• ESS({W (r)}Rr=1) = R if P = Q, hence our proposal is the target density.

• The closer is getting ESS({W (r)}Rr=1) = R to R, the better is our proposal distribution (and

close to P).

• In practice, once we collect our sample, we can assess its quality by computing empirically

the ESS(W1:R) with the observed weights.
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Curse of dimensionality and IS

• It is a commonplace that importance sampling suffers from the curse of dimensionality.

• Consider again distributions P and Q, with P ≪ Q, and let

Pp(dθ1:p) =

p∏
j=1

P(dθj ), Qp(dθ1:p) =

p∏
j=1

Q(dθj ),

i.e. both Pp and Qp factorize in i.i.d. copies of P and Q, respectively.

• Hence, if we consider again w(θ) = dP(θ)/dQ(θ) (normalized here), we have

wp(θ1:p) =
dPp

dQp
=

p∏
j=1

w(θj ).

Then,

VarQp (w(θ1:p)) = Q(w2)p − 1,

which grows exponentially in p number of dimensions.
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The Pima Indian dataset

• We consider again the “famous” Pima Indian dataset, with n = 532 and p = 8.

• The purpose of this exercise is mainly to present the implementation of the various IS

algorithms and show their performance in this specific example.

• The following results should not be generalized to any statistical models nor even to any

logistic regression model.

• We consider once again a logistic model, with

yi | λi
ind∼ Bern(λi ), λi = g(ηi ), ηi = β1xi1 + · · ·+ βpxip ,

and a priori an independent component Gaussian prior, with β ∼ Np(0, 100Ip).

• We consider different proposal distributions.
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Naive covariance matrix

• Let us start with a naive choice for the proposal covariance S = 103Ip , centering the

distribution in 0.

• This “random” choice of S works terribly, producing garbage results.

# Covariance matrix and expectation of the proposal

S <- diag(100, ncol(X))

mu <- rep(0, 8)

# Running the IS (R = 30000)

IS_not_informed <- IS(R, y, X, S, mu)

est_coef <- colSums(IS_not_informed$values * exp(IS_small$weights))

# X Xnpreg Xglu Xbp Xskin Xbmi Xped Xage

# -0.866 0.433 1.201 -0.039 0.060 0.602 0.401 0.145

ESS <- 1 / sum(exp(IS_not_informed$weights)^2)

# 1

idx <- sample(1:R, R, TRUE, exp(IS_not_informed$weights))

length(unique(idx))

# 1
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Informed covariance matrix

• We now set the proposal parameters according to the Laplace approximation of the

posterior distribution.

# Covariance matrix and expectation of the proposal

S <- vcov(fit_logit)

mu <- coefficients(fit_logit)

# Running the IS (R = 30000)

IS_informed <- IS(R, y, X, S, mu)

est_coef <- colSums(IS_not_informed$values * exp(IS_small$weights))

# X Xnpreg Xglu Xbp Xskin Xbmi Xped Xage

# -0.865 0.253 0.943 -0.068 0.234 0.424 0.324 0.397

ESS <- 1 / sum(exp(IS_not_informed$weights)^2)

# 2876.212

idx <- sample(1:R, R, TRUE, exp(IS_not_informed$weights))

length(unique(idx))

# 7378
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Importance resampling



Motivation

• Resampling is the action of drawing randomly from a weighted sample, so as to obtain an

unweighted sample.

• Resampling has the curious property of potentially reducing the variance at a later stage.

This point is crucial for the good performance of particle algorithms.

• We have the following particle approximation of P0(dθ)

PR
0 (dθ) =

R∑
r=1

W
(r)
0 δ

θ
(r)
0

, θ
(r)
0 ∼ Q0, W

(r)
0 =

w0(θ
(r)
0 )∑R

r=1 w0(θ
(r)
0 )

,

obtained through importance sampling based on the proposal Q0 and the weight function

w0.

• Ideally, we want to recycle the previous to approximate the following extended probability

measure

(P0Q1)(dθ0:1) = P0(dθ0)Q1(θ0,dθ1),

where Q1(θ0,dθ1) is a probability kernel function.
→ Q1(θ0, ·) is a probability measure

→ Q1(θ0,A) is measurable in θ0

• There are two solutions to this problem.
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Importance resampling I

• At first, we recognize that importance sampling from Q1 = Q0Q1 to P0Q1 requires

i) to sample {θ(r)
0 , θ

(r)
1 }R

r=1 from Q0Q1;

ii) to compute the weights, which are precisely w0(θ
(r)
0 ), r = 1, . . . ,R, since θ

(r)
1 condittionally on

θ
(r)
0 is sampled from the correct distribution.

• If we want to follow this strategy, the only thing is left to sample is

θ
(r)
1 ∼ Q1(θ

(r)
0 ,dθ1), r = 1, . . . ,R.

• This strategy belongs to the sequential importance sampling framework.

• Inference relative to (P0Q1) may be analyzed as standard importance sampling, without

paying attention to the intermediate step.

• In practice, we are keeping fixed the weight values, but we resample our particles according

to the probability kernel function Q1, filtering our particles over time.
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Importance resampling II

• The second strategy considers a two-step approximation. We first replace in the previous

definition of the target extended probability measure P0 by PR
0 , with

PR
0 (dθ0)Q1(θ0,dθ1) =

R∑
r=1

W
(r)
0 Q1(θ

(r)
0 ,dθ1)δ

θ
(r)
0

(dθ0).

• Then, we resample R times from the previous, which is an intermediate approximation, so

we sample from

1

R

R∑
r=1

δ
θ̃
(r)
0:1

, θ̃
(r)
0:1 ∼ PR

0 (dθ0)Q1(θ0,dθ1).

• This second approach is called importance resampling, as it is connected to other

resampling techniques, such as the bootstrap, where we sample with replacement.

• At first, it seems unappealing, as it has two approximation steps. Intuitively, it should have

a larger Monte Carlo error and more computationally expensive. However, the first intuition

turns out to be incorrect.
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Toy example

• Let us consider the following toy example (Section 9.2, Chopin and Papaspiliopoulos, 2020).
We set our sampling space Θ = R.
→ Our approximating measure at time 0 is a standard Gaussian distribution, i.e. Q0

d
= N(0, 1).

→ Our target distribution is a truncated Gaussian distribution, setting mass in [−τ,+τ ], i.e.

P0
d
= TNτ (0, 1).

→ Q1(θ0, dθ1) is our probability kernel function, with

θ1 = ρθ0 +
√

1 − ρ2U, U ∼ N(0, 1).

→ We consider as test function g(θ1) = θ1, identity function, we want to obtain a sample at time 1.

• We have two alternatives

importance sampling: ĝIS (θ) =
R∑

r=1

W
(r)
0 θ

(r)
1 , (θ

(r)
0 , θ

(r)
1 ) ∼ Q0Q1,

importance resampling: ĝIR(θ) =
1

R

R∑
r=1

θ
(r)
1 , θ

(r)
1 ∼ PR

1 Q1,

where θ
(r)
1 ∼ PR

1 Q1 means we draw from the corresponding marginal distribution.
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Toy example
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Effect of resampling for the toy example with N = 20, τ = 0.3, ρ = 0.5. Green dots represent

particles with non-zero weights.
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Toy example

• For this specific case, we have that in the limit behavior

√
RĝIS

d→ N(0, σ2
IS ),

√
RĝIR

d→ N(0, σ2
IR),

with

σ2
IS = ρ2

γ(τ)

S(τ)
+ (1− ρ2)

1

S(τ)
,

σ2
IR = ρ2

γ(τ)

S(τ)
+ (1− ρ2) + ρ2γ(τ),

where S(τ) = Q0(w0) = P(|θ0| ≤ τ) = 2Φ(τ)− 1 and γ(τ) = P0(θ20).

• The first term is due to the variability of the particles θ0 at time 0, equal for both.

• The second term is due to the variability of the innovation terms U (simulated when

sampling from kernel Q1), smaller for importance resampling since S(τ) < 1.

• The third term appears only for IR, and comes from the randomness introduced by the

resampling step.

• Further, (σ2
IS − σ2

IR) → +∞ for τ → 0 and any fixed ρ.
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Summary

• We have a general structure to filter particles from time 0 to 1, which we can generalize to
multiple times and combined with many possible model choices.

→ We can define general algorithms to deal with state-space models.

• Against our intuitions, resampling does not always result in an increase of the estimation

variance. Indeed, sometimes, e.g. in presence of some hard constraints such as truncation,

the variance can be reduced, as shown in the toy example.

• There are many possible sampling schemes, some of them can be better in specific

scenarios. In practice, systematic sampling works pretty well.

• Resampling can be viewed as random weights importance sampling.
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Importance resampling with Pima dataset

• We consider again the Pima dataset, but now with the proposal distribution at time 0 being

a multivariate Gaussian with parameter based on the Laplace approximation.

• Moving from time 0 to time 1, we resort to the transition kernel of the MALA algorithm.

# Covariance matrix and expectation of the proposal

S <- vcov(fit_logit)

mu <- coefficients(fit_logit)

sigma2 <- 0.1

# Running the IrS (R = 30000)

IrS_not_informed <- IrS(R, y, X, S, mu, sigma2)

est_coef <- colSums(IS_not_informed$values * exp(IS_small$weights))

# X Xnpreg Xglu Xbp Xskin Xbmi Xped Xage

# -0.866 0.433 1.201 -0.039 0.060 0.602 0.401 0.145

ESS <- 1 / sum(exp(IS_not_informed$weights)^2)

# 12362.98

idx <- sample(1:R, R, TRUE, exp(IS_not_informed$weights))

length(unique(idx))

# 13740
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