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Being approximate: why

MCMC methods could be expensive to compute, especially for large sample sizes n.

The computational cost increases mainly by two components: evaluating the
(log)likelihood function, usually when we need its normalization constant and is hard to
compute, and proposing a new candidate.

Moreover, many mcmc algorithms require a rough estimate of some key posterior quantities,
such as the posterior variance. Recall, e.g., the MALA.

These issues motivate the development of deterministic approximations of the posterior
distribution or the definition of approximate sampling schemes, that avoid the usual
bottlenecks.

Compared to MCMC methods, the accuracy of this class of approximations can not be
reduced by running the algorithm longer.

On the other hand, deterministic approximations are typically very fast to compute and

sufficiently reliable in several applied contexts, while approximate sampling schemes can be
used in challenging and intractable scenarios.
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Laplace Approximation



The Laplace approximation

e Let m(0 | X) be a continuous and differentiable posterior density in © C RP.

e The Laplace approximation is one of the first approximation methods that has been
proposed. It was known even before the advent of MCMC.

e The key idea is approximating the log-posterior density log m(0 | X) using a Taylor
expansion around the mode éMAp, yielding

. 1 A . .
log 7(6 | X) ~ log m(Bmap | X) — 5 (6 — 611ap)TM ™1 (6 — Opap) + const,

where M is the negative Hessian of log w(6 | X) evaluated at @pjap, that is
2

M=———
20007

log (6 | X) 0—bu0p

Hence, the above quadratic expansion leads to the following multivariate Gaussian

approximate posterior
(0| X) = Np(Oppap, M71).
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Comments on the Laplace approximation

A fairly strong asymptotic justification of the Laplace approximation is based on the
Bernstein—von Mises theorem.

Suppose the data Xi,..., X, are iid from a “true” model Pg,.
Very roughly speaking, under suitable regularity and sampling conditions

N N Pe
|I7(6 | X) = Np(Bmap, M~1)|l7v — 0, n— oo,

meaning that the total variation distance between the posterior and the Laplace
approximation weakly converges to 0 w.r.t. to the law of the sampling process Py, .

Here we are also assuming that éMAp and nM~1 are consistent estimators for the “true”
parameter value 8y and for the inverse Fisher information matrix, respectively.

Hence, in several cases and for n large enough, the law (0 | X) is roughly a Gaussian
centered at the mode and with variance depending on the Fisher information.
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Comments on the Laplace approximation

e The Laplace approximation is an old and simple method with appealing asymptotic
guarantees. Moreover, it only requires the computation of the Hessian and the MAP.

e Refined higher order improvements of expected posterior functionals can be obtained as in
Tierney and Kadane (1987).

e On the other hand, especially when the sample size n is relatively small, the quadratic
approximation of log (6 | X) may perform poorly.

e For example, if the posterior is not symmetric and unimodal, the map is not a good
estimate for the posterior mean, thus leading to inaccurate Gaussian approximations.

e Furthermore, if the parameter space © is bounded, a Gaussian approximation could be
quite problematic = a reparametrization should be considered.

e Finally, it is unclear how to handle discrete parameter spaces.
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More general approximations

e Let m(0 | X) € Py be a posterior distribution (intractable), and let g(8) € Q be a density,
where Qg C Py denotes the space tractable densities with support ©.

e In a general fashion, an optimal approximation §(0) € Q of the posterior distribution is
defined as
4(8) = arg min D(q(8), (6 | X))
q€Q

where D(+, -) is some divergence or metric over the space of probability distribution.

o Among other, one choice of D commonly used is the Kullback-Leibler divergence
D(-,-) = KL(- || -), resulting in well-known approximation approaches.

e Depending on the choice of the divergence D(,-) and of the space of approximating
densities Q, the problem could be computationally feasible or not.

e Clearly, this approach is relevant whenever the posterior (0 | X) is not included in the
subspace of tractable density Q.

6/40



More general approximations

e As for the choice of D(+, ), it would be theoretically appealing to consider metrics such as
the Hellinger distance, the total variation distance, or the Wasserstein distance.

e Unfortunately, even when we let Q be the space of multivariate Gaussians, finding the
optimal approximate density §(6) could be problematic.

e A basic requirement is that the optimization procedure should not depend on the
intractable normalizing constant of the posterior.

o We will consider two different though quite related divergences.
e The KL(q(0) || m(0 | X)) divergence, leading to the variational Bayes method.

e The KL(m(6 | X) || q(8)) divergence, leading to the expectation propagation method.
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The evidence lower bound (ELBO)

e In the first place, we recall that

(0 | X)de.

KL(q(8) || 7(8 | X)) = — /@ a(0)los ™55

e Hence, by multiplying and dividing the fractional term by 7(X), we obtain

) ~(X)x(0 | X)
J e ™ ) e
X

(0, X)
—/@q(e)log 0

where the first term in the last expression is called evidence lower bound ELBO(q(6)), and
the last term does not depend on 6.

KL(q(0) || =(6 | X))

d6 + log 7(X)

e Hence, if we want the best approximating density function g(0) € Qg, we have

§(0) = argmin KL(q(0) || ©(8 | X)) = argmax ELBO(q(9)),
qeQ q€Q

and the optimization does not depend on the intractable normalizing constant.
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The evidence lower bound (ELBO)

e The ELBO is indeed a lower bound of the marginal likelihood, because the divergence
KL(q(8) || =(6 | X)) > 0, implying that

ELBO(q(0)) < logw(X).

e This property of the ELBO has led to using the variational bound as a model selection
criterion, assuming that the ELBO is a good approximation of the marginal.

e Even when the optimal distribution (@) can be found, there is no guarantee that the
minimized KL

KL(q(0) || (0 | X)) > 0

will be small in absolute terms.

e Moreover, quantifying the value of KL(§(0) || 7(6 | X)) = log m(X) — ELBOq(6) would
require the knowledge of the normalizing constant, which is intractable.

e Essentially, it is currently hard to assess the quality of the obtained approximation without
comparing it with some “gold standard” such as MCMC.
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The evidence lower bound (ELBO)

e The VB optimization problem is ill-posed if we do not specify a tractable class Q.
e For reasons that will become clear later on, a convenient assumption is restricting the focus
on the class Q of mean-field approximations, in which we assume

B

a(0) = [ a(6s),

b=1

implying that we are forcing independence among B groups of parameters.

e It is important to notice that dependence is preserved within each block of parameters.

e Moreover, note that we are not forcing q(0) to belong to any known parametric family of
distributions. The only assumption we are making is independence.
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Derivation of the CAVI algorithm

e Under the mean-field approximation, we can derive the so-called coordinate ascent
variational inference (CAVI) algorithm.

e The optimization of the ELBO can be written as optimization of

B B
£L60(a(0)) = | [T la(@s)=(0. X100 — [ T]la(0s)log a(0s)] a0
b=1 b=1

e We aim at maximizing the bth component q(6;), keeping the others fixed. Thus, we
express the elbo isolating the term q(6), obtaining

/ a(65) { / log 7(6 | X)Hq(ej)deb:| d6, — / 4(85) 10g 4(85)40) + cs,
Jj#b

where ¢, denotes a term not depending on 6,

Defining the log-density (0, X) = E_p[m(0, X)] 4 const and re-arranging the terms, we
get

(6)b, X)

ELBO(a(6) = | q(eb)logﬁq(eb) A6, + & = —KL(q(65) || #(0p, X)) + &
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Properties and convergence

e The above previous chain of equations implies that the local maximization of the
ELBO(q(0)) with respect to the bth term of q(6}) is obtained by setting

4(0p) ox exp {E_b[log (0, X)]},
forany b=1,...,B.

e In practice, the above expectation is often straightforward to compute, and some known
kernel can usually be recognized (as in the Gibbs sampling).

e In the CAVI algorithm, we iteratively update the factors q(6)) by using the locally
maximized terms given the others.

e By construction, this produces a monotonic sequence that convergences to a local
optimum of the ELBO.

The CAVI is an appealing algorithm for maximizing the ELBO under the mean-field

assumption, but in principle, one could use any other optimizer.

e The necessary computations and expectations are usually doable if the full conditional
distributions belong to some exponential family.

The algorithm stops whenever the ELBO sequence has converged.
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Underestimation of the variability

e The combination of mean-field assumption 4+ VB approach typically leads to a sensible
underestimation of the variability.

e In the first place, this is a consequence of the insufficient flexibility of the mean-field class
of approximating densities.

e Indeed, if the densities in Q were arbitrarily close to the posterior, this phenomenon would
be negligible.

e In second place, this is a consequence of the chosen divergence. Indeed, the quantity
(0| X

KL(a(0) 1 (0 | X)) = - [ a(0)1og 21X

o q(0)

favors the choice of densities g(0) which are included in the support of 7(8 | X).

de

e Further, there is a large positive contribution to the above KL for those values of 8 such
that 7(6 | X) ~ 0, unless (@) ~ 0 as well.
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The cavi for a Gaussian example

e Let us assume the observations (xi, ..., x,) are draws from
Xi |7~ N, 771, i=1,...,n,
with independent priors p1 ~ N(mo, s3) and 7 ~ Ga(ao, bo).

e Assuming a mean-field approximation g(u, 7) = g(1)q(7), the cavi algorithm iterates
between the following steps simple steps.

e Update g(p). The locally optimal variational distribution for q(u) is

m, u 1\!
a(n) £ N(mn, 7). mnsg<5;+Eq[T]zx,-, ssz(nEq[ms—z) :
0 0

i=1
e Update g(7). The locally optimal variational distribution for g(7) is

n 1<
q(7) < Ga(an, bn), an = ao + > bn = by + > ;Eq [(Xi - M)2]-
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The Pima dataset

e The logistic regression case has often been presented as an example in which mean-field
variational Bayes can not be applied. See, for example, Section 10.5 of Bishop (2006).

e A priori, we set 3 ~ Ny(bo, Bp).

® Recently, a mean-field approximation for an augmented version of the model has been
proposed (Durante, D. and Rigon, T., 2019).

e We consider a sequence of augmented variables Z3,...,Z, ~ PG(1,0), where PG(c,7)
denotes the Pélya-gamma random variable, i.e.

d
- 27f2 Z (U—-1/27 +72/(47T2)
with G; ~ Ga(a, 1), a >0 and v € R.

e The density of a Pélya-gamma random variable is expressed in terms of an infinite
summation, but it can be easily simulated.
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The Pima dataset

e The algorithm iterates between two simple steps.
e Update g(3). The locally optimal variational distribution for g(3) is
q(B) o exp [Eq{log7(y, z | B) + log 7(B)}]

x () {Z(y,- ~1/2)x78 - ;Eq[z,-](X,-Tﬁf}

i=1
Re-arranging the above equation, we obtain that q(3) 2 Np(p, ) with
p=X(XT(y—1/2)+ By 'bo), T =(XTEq[Z]X+B7 ),
where Z = diag(z1,...,zn) and its expectation is taken w.r.t. q(z).

e Hence, the optimal variational distribution for 3 is Gaussian. This is an implication of the
mean-field structure and not an assumption.
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The Pima dataset

e The second step involves the variational distribution g(z).
e Update g(z). The locally optimal variational distribution for q(z) is
q(z) o exp Eq[log p(y, z | B)]

[ pla [ 1.0)exp (~% Balo])

i=1

Re-arranging the above equation, we have

q(z) = [ [ P6(1. Eqln?]).-

i=1

e Hence, the optimal variational distribution for z are independent Pdlya-gamma
distributions. As before, this is an implication and not an assumption.

17/40



CAVI algorithm with Pima dataset

e We consider again the Pima dataset, using the CAVI algorithm.

e We use a N,(0,100I,) as prior distribution.

# prior parameters
b <- rep(0, 8)
B <- diag(100, 8)

# Running the CAVI
fit_CAVI <- logit_CAVI(y, X, B, b)

est_coef <- fit_CAVI$mu
# X Xnpreg  Xglu Xbp Xskin  Xbmi Xped

Xage

# -0.990 0.406 1.097 -0.095 0.072 0.569 0.452 0.284
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Approximate Bayesian
computation




Even more approximate

e In the previous case, we introduced approximate methods to avoid the intractability of
w(0 | X), with X; € X and 8 € © C RP, but we assumed that we can evaluate/deal with
(6, X).

e Recall that 7(0, X) = L(X | 8)m(0), where the likelihood term is given by

L(X[68)=]]f(x|6).
i=1

e In many scenarios, even evaluating the likelihood is unfeasible, since we have
1
f(xi|0)=—g(x|9),
Zg
where Zg < +o0 is an intractable normalizing constant, which depends on the value of 6.
e At the same time, even if we cannot evaluate the density function f(x; | 8) of X;, in many

scenarios we can easily sample Xj.
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Some examples

e g-and-k distribution, extends the Gaussian distribution with added skewness and
heavier/lighter tails, defined by the quantile function

Fol(u) = a+ b[1+ ctanh(gu/2)] 0~ (u)[1 + (0~ ())?] .

with ®~1(-) being the quantile function of a standard Gaussian distribution,
aeR, b>0, g>0, k>0 are location, scale, shape (affecting the skewness) and shape
(affecting the kurtosis) parameters respectively.

e Hidden Potts model, let i € {1,..., n} denotes the notes of a lattice (e.g. pixels in an
image), with y; € {1,..., k} denotes the node’s ith node's state. The Potts model is a
Markov random field of the form

e (0 e ly=ya1)
j 1 &XP (QZINE 1D’: YZ])

where i ~ ¢ are neighboring nodes of i, and 6§ > 0.

P(yi | Yi~ne) =
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Key ideas of ABC

e Suppose we observe Xi, ..., X, with

X | 0% f(x |6), and 6~ m(6).

e The intuition of ABC methods is that, once we have a parameter value 0, we generate a
set of synthetic data S1,...,5S,.

e If the synthetic data S;,...,S, are close enough to the observed one Xi,..., X, , then the
data generating process of the synthetic data is similar to the one of the observed data.

e But the two data generating process share the same structure and are indexed by 6. Hence,
if the two set of data are close enough, 6 is a reasonable parameter also for Xi, ..., X,.

e Such approach can be combined with different sampling strategies and refined to obtain
efficient sampler for posterior arising from intractable likelihood.

e This motivates also labeling these approaches as " likelihood free methods”,
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Rejection sampler, an old friend

e We recall one of the basic Monte Carlo sampler, the rejection sampler.

e Suppose we want to sample from 7(0 | X) using an auxiliary distribution h(€). With

rejection sampling we can produce a sample as follows.

At the rth sampling step

i) We generate () X h(0) (independent of the previous state).

ii) Accept 6(") with probability

(r) (r)
77r(9 I X), with K > max 77r(0 | X),
Kh(6() 6 h(6()

otherwise go back to 7).

e Here we still have to evaluate the likelihood function, we can extend this algorithm
accommodating for synthetic data.

e The support of h(-) should cover the support of (8(") | X).
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ABC rejection sampler

e A first intuitive ABC sampler can be obtained as follows.

At the rth sampling step
i) We generate 6(") Z h(0) (independent of the previous state).

iid

ii) We generate S ~ f(s | 8(").

ii) Accept 8(") with probability

7r(0(’))

()
, with K > max M,
Kh(6()) 6" h(6(n)

otherwise go back to ).

e We do not need anymore to evaluate the data density function, but just to use it as
sampling mechanism.

e However, having S, X € X" C RY, then we have P(S=X)=0.

e Further, when the number of observation is large, using the whole sample information is

slowing the sampler possibly without practical benefits.
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Relaxing the matching condition

e In general, we do not assume an identity function to compare the observe data and the
synthetic one.

e In fact, we require that the observed data are close enough to the synthetic one, for
example requiring that
[|1X =S|l e

for some threshold € > 0 and some distance measure ||-||.

e When € = 0, we go back on the previous rejection sampler and we produce a sample from
w(0 | X). However, usually we consider € > 0, producing a sample from an approximation
of such a distribution.

e The previous can be further generalized by applying a kernel function to the previous
distance, hence moving from

1 X-S
x-sica o Ka(ix-sjy =g (X,

Common choices are the triangular kernel K(u) = (1 — |u|)1[j4/<1) and the Gaussian kernel
K(u) = ¢(u), with ¢ being the density function of a standard Gaussian distribution.
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Simplify the comparison

e Secondly, when the number of observations increases, the comparison can be based on a
reduced information instead of the whole sample.

e Further, is highly unlikely that S &~ X can be generated from f(s | @) for any choice of 6.

e This results in the need of a large scale parameter )\ in the kernel function, in order to
achieve decent acceptance rates with the rejection algorithm.

e A common practice is to consider summary statistics of both observed and synthetic data,
and then use those statistics in the comparison

Kx([lo(X) = o(S)I)

where ¢(-) : X" — RY is a function producing a vector of summaries of X or S.
e This approach actually produce a sample from magc(0 | #(X)). However, if the vector of

summary statistics is sufficient for the model parameters, then the approximating
distribution corresponds to magc(0 | X).

25/40



ABC rejection sampler (better version)

At the rth sampling step

i) We generate 6(") Z h(0) (independent of the previous state).
ii) We generate S i f(s|6).
ii) Compute the synthetic data summary statistics 1(S).

iv) Accept 0(") with probability

Ka(llo(X) = o(S)I)m(6)
Ch(6() ’

) (6()
with C > K,(0) max W,

otherwise go back to ).

e The observed data summary statistics can be pre-computed once, before the sampling,
saving computational time.

e The degree of approximation we are introducing is tuned by specific choices of A, K and |[-||.
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The target distribution

e In practice, we are sampling from the joint distribution
(0, 6(S) | #(X)) o< Kx([l¢(X) — &(S)INL((S) | 0)(6),

and the posterior ABC distribution si defined as

masc(0 | 9(X)) = [ #(0.0(5) | #(X))as.

o We can see that, as the scale parameter of the kernel decreases, we have
lim mapc (0 | #(X)) O</ lim Kx([[(X) — &(S)INL(4(S) | 6)m(6)dS
A—0 xn A—=0

= /X S5(x)(B(S))L(A(S) | 0)7(68)dS = 7(6 | 4(X))

e If ¢(-) is sufficient or it is simply the whole sample, it is apparent that the previous
corresponds to (60 | X).
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How much approximate

e We can also quantify the accuracy of an ABC sampler. For simplicity of illustration, let us
consider the a sampler without summary statistics, and an univariate case with a single data
point, x,s € X =R, and ||-|| = ||.

e We can see that the error committed in approximating the likelihood function (i.e. ignoring
the prior distribution) corresponds to

Lagc(x | 0) = /K)\(\x —s|)L(s | 8)ds = / K(u)L(x — uX | 8)du.
Using a Taylor expansion, we have
u2)\2 d2
2 dx?

Lagc(x|0) = /K(u) [L(X | 9) — u)\dd—XL(X | 0) + L(x|6)—--|du

which can be truncated, with some simplification, in

)\2 2
Lapgc(x | 6) ~L(x | 8) + — —L(x| 0)/u2K(u)du
2 dx
e Hence, the bias we are committing is given by
X2, a2
bx(x16) = 5 @L(x | 9),

where we can see that is quadratic in A and depends on the kernel choice through
o2 = [u?K(u)du.
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Interpretation

e There are many way to describe and interpret ABC samplers and their impact on statistical
analysis.

e Commonly (e.g. Blum, 2010), in the ABC setting we are interested in the joint sample
(87, 8(N), and we produce an empirical conditional density of (8 | X) by weighting the
00s by ||S() — X||

e Fearnhead and Prangle (2012) noted that the ABC approximation of the posterior is a
continuous mixture

maac(® | X) [ w(S)a(@ | S)ds,
where w(S) x K (]|S — X||)m(X), with m(X) being the marginal distribution of X.

e Wilkinson (2013) pointed out that ABC methods can be considered as exact if ||S — X||
represents an error term (observational error or model misspecification), and K}, is the error
distribution.
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ABC rejection sampler with Pima dataset

o We consider again the Pima dataset, but using a ABC rejection sampler.
e We use a N,(0,100I,) as prior distribution, Np(p, S) as proposal, and as kernel, we
. A
consider Kx(||S — X||) = (2 30, Iis,=xy))

n

# not informed

S <- diag(100, 8)
mu <- rep(0, 8)
lambda <- 3

# Running the ABCr (R = 3000)
ABCrejectionNI <- ABCrejection(R, lambda, y, X, S, mu)

colMeans (ABCrejectionNI$param)
# X Xnpreg  Xglu Xbp Xskin  Xbmi  Xped  Xage
#-2.975 1.978 3.760 1.060 1.640 2.047 1.793 2.402

ABCrejectionNI$acc
# 0.152
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ABC rejection sampler with Pima dataset

e Same but using the Laplace approximation as proposal.

# not informed

S <- vcov(fit_logit)

mu <- coefficients(fit_logit)
lambda <- 3

# Running the ABCr (R = 3000)
ABCrejectionNI <- ABCrejection(R, lambda, y, X, S, mu)

colMeans (ABCrejectionNI$param)
# X Xnpreg  Xglu Xbp Xskin  Xbmi  Xped  Xage
#-0.991 0.405 1.097 -0.098 0.068 0.571 0.449 0.284

ABCrejectionNI$acc
# 0.995
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Improving ABC methods




Motivation

e We can improve our sampler by combining the previous strategy with other sampling
strategy, for example the one presented in the previous sessions.

e In general, we target the joint distribution of parameter vector and summary statistics

(0, B(S) | $(X)) o Kx(||#(S) — (X)INL(S | 0)7(6)

e Samples of @ can be obtained by sampling jointly (6, S) and marginalizing by discarding S.

e lIdeally, we will see ...
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ABC importance sampling

e We discussed that importance sampling is a procedure that, in the spirit of rejection sampler,
use an instrumental distribution to propose possible values of the quantity of interest.
However, rather than calculate acceptance probabilities, produce a weighted sample.

e Once we draw a candidate 6(") ~ q(H(’)), we also compute a weight associated to this

value, w(6()) = 7(6() | X)/q(8").
e From the previous, it is easy to see that
Eqw(©)£(0)] = [ £(0)w(6)a(0)d0 = [ £(6)r(0 | X)do = Ex[g(6)]
which can be approximated via Monte Carlo methods.
o When the target distribution is not normalized, we simply used a normalized version of the

weights
w(8()

w — "7
Xy w(6e0)
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ABC importance sampling

e In the following slides, we do not consider the summary statistics case. However, everything
here presented can be done also using summaries of the samples, both observed and
synthetic.

e From an ABC perspective, importance sampling works similarly to rejection sampling.

e Our target distribution of the importance sampling is magc(0,S | X), and the proposal
(importance) distribution is of the form (8, S) = L(S | 8)q(0), defined jointly on the
parameter and sample spaces.

® As results, the unnormalized importance weights are

masc(6,5 | X)  Ki(lIS — X|})7(6)
qa(6,s) q() ’

which is free of the intractable likelihood term.

w(0) x

e The choice of the importance distribution q(0) is crucial for the algorithm performances.
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importance ABC in practice

At the rth sampling step

i) We generate 6(") Z q(0) (independent of the previous state).
ii) We generate S; X f(s|00), fori=1,...,n.

ii) Compute the importance weights

Ka([1S — X|)m(6))

w(0r) = a(60)

e The result is a weighted sample, which can be possibly resampled.
e The kernel choice impacts on the resulting weights. Specifically, if the kernel has

non-compact support, the importance weights are guaranteed to be always non-zero.
However, this may results in high variability and low ESS of the sampler.
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Importance ABC sampling with Pima dataset

o We consider again the Pima dataset, but using a ABC importance sampler.

e We use a N,(0,100I,) as importance distribution, Np(pt, S) as proposal, and as kernel, we
. A
consider K5 (||S — X||) = (1 30, Tjs,=x;])

n

# not informed

S <- diag(100, 8)
mu <- rep(0, 8)
lambda <- 3

# Running the ABCis (R = 3000)
ABCimportanceNI <- ABCimportance(R, lambda, y, X, S, mu)

colMeans (ABCrejectionNI$param)
# X Xnpreg  Xglu Xbp Xskin  Xbmi  Xped  Xage
# -3.639 1.782 3.760 1.013 1.403 2.154 1.812 2.388

ABCrejectionNI$acc
# ESS

36/40



Importance ABC sampling with Pima dataset

e Same but with Laplace approximation as importance distribution.

# not informed

S <- vcov(fit_logit)

mu <- coefficients(fit_logit)
lambda <- 3

# Running the ABCis (R = 3000)
ABCimportancel <- ABCimportance(R, lambda, y, X, S, mu)

colMeans (ABCrejectionNI$param)
# X Xnpreg  Xglu Xbp Xskin  Xbmi  Xped  Xage
#-1.064 0.348 1.089 -0.092 0.086 0.539 0.428 0.326

ABCrejectionNI$acc
# 14.263
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ABC-MCMC

e As we saw earlier in the days, MCMC can be used to define sampling strategies. In
particular, with some regularity assumptions, it is possible to produce suitable algorithm
whose transition kernel produce a Markov Chain which is ergodic to a specific target
distribution.

e Among others, a broad class of algorithm is given by the Metropolis-Hastings algorithm,
where given a current state 8("), we propose a candidate from q(0 | 0(’_1)) and then accept
such a value with probability

a(9,9<'>)_min{1, (6] X)a(0""" | 6) }

(00D | X)q(8 | 60D

e it is only natural that MCMC-based ABC algorithms have been studied, as they combine
both the tractability of ABC methods, and the feature of MCMC algorithms, such as
Markovian dependence over time.

e ABC MCMC algorithms were originally studied by Marjoram et al. (2003), an later
extended in many directions, by considering different MCMC strategies.
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ABC-MCMC

e In an ABC setting, the target distribution is magc(0, S | X), whereas possibly we
marginalize S.

e Hence, our proposal distribution works on the product space © x X". In practice, we want
to have (Markovian) memories only for the parameter values. Hence, our proposal usually

has form
q(6,5 |61, sy =g(6 | 6"~ V)L(S | ),

so that the synthetic data are sampled independently from the past.

e The resulting acceptance rate equals

(r—1) (r—1)
min{ Tasc(0,S | X)q(0—1. S |6,S) }

0.5 9(1‘71) S(rfl)
(0,5 | ' ) " magc (001D, §—1) | X)q(6,S | (r—1), (1))

=min< 1 Ka(]|S — X||)7(8)q(6(—1) | 8)
) K)\(||S(r—1) _ XH)W(G("l))q(e | g(r—l)) X

e Note that, the previous acceptance rate does not involve the intractable likelihood term.
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ABC-MCMC in practice

At the rth sampling step
i) We generate 6 & q(e | et—1).

ii) We generate S; ~ f(s|@), fori=1,...,n.

ii) With probability

_ (r=1)
a(8.5 | 60D §C-1) = min {1 Kx(IIS = X[)(8)q(60“ = | 6) }

"KA(|[SC=D — X|)w(8(—1)q(0 | 6(—1)

set (0(),5(N) = (0, S), otherwise (8("), §() = (r—1), §(r=1)),

e The algorithm satisfies the detailed balanced condition on magc(0, S | X).
e The algorithm can be sensible to the initial condition.

e Thus, the strategy can be combined with specific proposal (e.g. MALA).
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