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Being approximate: why

• MCMC methods could be expensive to compute, especially for large sample sizes n.

• The computational cost increases mainly by two components: evaluating the

(log)likelihood function, usually when we need its normalization constant and is hard to

compute, and proposing a new candidate.

• Moreover, many mcmc algorithms require a rough estimate of some key posterior quantities,

such as the posterior variance. Recall, e.g., the MALA.

• These issues motivate the development of deterministic approximations of the posterior

distribution or the definition of approximate sampling schemes, that avoid the usual

bottlenecks.

• Compared to MCMC methods, the accuracy of this class of approximations can not be

reduced by running the algorithm longer.

• On the other hand, deterministic approximations are typically very fast to compute and

sufficiently reliable in several applied contexts, while approximate sampling schemes can be

used in challenging and intractable scenarios.
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Laplace Approximation



The Laplace approximation

• Let π(θ | X ) be a continuous and differentiable posterior density in Θ ⊆ Rp .

• The Laplace approximation is one of the first approximation methods that has been

proposed. It was known even before the advent of MCMC.

• The key idea is approximating the log-posterior density log π(θ | X ) using a Taylor

expansion around the mode θ̂MAP , yielding

log π(θ | X ) ≈ log π(θ̂MAP | X )−
1

2
(θ − θ̂MAP)

⊺M̂−1(θ − θ̂MAP) + const,

where M̂ is the negative Hessian of log π(θ | X ) evaluated at ˆθMAP , that is

M̂ = −
∂2

∂θ∂θ⊺
log π(θ | X )

∣∣∣
θ=θ̂MAP

.

• Hence, the above quadratic expansion leads to the following multivariate Gaussian

approximate posterior

π(θ | X ) ≈ Np(θ̂MAP , M̂
−1).
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Comments on the Laplace approximation

• A fairly strong asymptotic justification of the Laplace approximation is based on the

Bernstein–von Mises theorem.

• Suppose the data X1, . . . ,Xn are iid from a “true” model Pθ0
.

• Very roughly speaking, under suitable regularity and sampling conditions

||π(θ | X )− Np(θ̂MAP , M̂
−1)||TV

Pθ0−→ 0, n → ∞,

meaning that the total variation distance between the posterior and the Laplace

approximation weakly converges to 0 w.r.t. to the law of the sampling process Pθ0
.

• Here we are also assuming that θ̂MAP and nM̂−1 are consistent estimators for the “true”

parameter value θ0 and for the inverse Fisher information matrix, respectively.

• Hence, in several cases and for n large enough, the law π(θ | X ) is roughly a Gaussian

centered at the mode and with variance depending on the Fisher information.

4/40



Comments on the Laplace approximation

• The Laplace approximation is an old and simple method with appealing asymptotic

guarantees. Moreover, it only requires the computation of the Hessian and the MAP.

• Refined higher order improvements of expected posterior functionals can be obtained as in

Tierney and Kadane (1987).

• On the other hand, especially when the sample size n is relatively small, the quadratic

approximation of log π(θ | X ) may perform poorly.

• For example, if the posterior is not symmetric and unimodal, the map is not a good

estimate for the posterior mean, thus leading to inaccurate Gaussian approximations.

• Furthermore, if the parameter space Θ is bounded, a Gaussian approximation could be

quite problematic ⇒ a reparametrization should be considered.

• Finally, it is unclear how to handle discrete parameter spaces.
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More general approximations

• Let π(θ | X ) ∈ Pθ be a posterior distribution (intractable), and let q(θ) ∈ Q be a density,

where Qθ ⊆ Pθ denotes the space tractable densities with support Θ.

• In a general fashion, an optimal approximation q̂(θ) ∈ Q of the posterior distribution is

defined as

q̂(θ) = argmin
q∈Q

D(q(θ), π(θ | X ))

where D(·, ·) is some divergence or metric over the space of probability distribution.

• Among other, one choice of D commonly used is the Kullback-Leibler divergence

D(·, ·) = KL(· || ·), resulting in well-known approximation approaches.

• Depending on the choice of the divergence D(·, ·) and of the space of approximating

densities Q, the problem could be computationally feasible or not.

• Clearly, this approach is relevant whenever the posterior π(θ | X ) is not included in the

subspace of tractable density Q.
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More general approximations

• As for the choice of D(·, ·), it would be theoretically appealing to consider metrics such as

the Hellinger distance, the total variation distance, or the Wasserstein distance.

• Unfortunately, even when we let Q be the space of multivariate Gaussians, finding the

optimal approximate density q̂(θ) could be problematic.

• A basic requirement is that the optimization procedure should not depend on the

intractable normalizing constant of the posterior.

• We will consider two different though quite related divergences.

• The KL(q(θ) || π(θ | X )) divergence, leading to the variational Bayes method.

• The KL(π(θ | X ) || q(θ)) divergence, leading to the expectation propagation method.
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The evidence lower bound (ELBO)

• In the first place, we recall that

KL(q(θ) || π(θ | X )) = −
∫
Θ
q(θ) log

π(θ | X )

q(θ)
dθ.

• Hence, by multiplying and dividing the fractional term by π(X ), we obtain

KL(q(θ) || π(θ | X )) = −
∫
Θ
q(θ) log

π(X )π(θ | X )

π(X )q(θ)
dθ

= −
∫
Θ
q(θ) log

π(θ,X )

q(θ)
dθ + log π(X )

where the first term in the last expression is called evidence lower bound ELBO(q(θ)), and

the last term does not depend on θ.

• Hence, if we want the best approximating density function q(θ) ∈ Qθ , we have

q̂(θ) = argmin
q∈Q

KL(q(θ) || π(θ | X )) = argmax
q∈Q

ELBO(q(θ)),

and the optimization does not depend on the intractable normalizing constant.
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The evidence lower bound (ELBO)

• The ELBO is indeed a lower bound of the marginal likelihood, because the divergence

KL(q(θ) || π(θ | X )) ≥ 0, implying that

ELBO(q(θ)) ≤ log π(X ).

• This property of the ELBO has led to using the variational bound as a model selection

criterion, assuming that the ELBO is a good approximation of the marginal.

• Even when the optimal distribution q̂(θ) can be found, there is no guarantee that the

minimized KL

KL(q(θ) || π(θ | X )) ≥ 0

will be small in absolute terms.

• Moreover, quantifying the value of KL(q̂(θ) || π(θ | X )) = log π(X )− ELBOq(θ) would

require the knowledge of the normalizing constant, which is intractable.

• Essentially, it is currently hard to assess the quality of the obtained approximation without

comparing it with some “gold standard” such as MCMC.
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The evidence lower bound (ELBO)

• The VB optimization problem is ill-posed if we do not specify a tractable class Q.

• For reasons that will become clear later on, a convenient assumption is restricting the focus

on the class Q of mean-field approximations, in which we assume

q(θ) =
B∏

b=1

q(θb),

implying that we are forcing independence among B groups of parameters.

• It is important to notice that dependence is preserved within each block of parameters.

• Moreover, note that we are not forcing q(θ) to belong to any known parametric family of

distributions. The only assumption we are making is independence.
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Derivation of the CAVI algorithm

• Under the mean-field approximation, we can derive the so-called coordinate ascent

variational inference (CAVI) algorithm.

• The optimization of the ELBO can be written as optimization of

ELBO(q(θ)) =

∫
Θ

B∏
b=1

[q(θb)π(θ,X )]dθ −
∫
Θ

B∏
b=1

[q(θb) log q(θb)]dθ

• We aim at maximizing the bth component q(θb), keeping the others fixed. Thus, we

express the elbo isolating the term q(θb), obtaining∫
q(θb)

∫ log π(θ | X )
∏
j ̸=b

q(θj )dθ−b

 dθb −
∫

q(θb) log q(θb)dθb + cb,

where cb denotes a term not depending on θb.

• Defining the log-density π̃(θb,X ) = E−b[π(θ,X )] + const and re-arranging the terms, we

get

ELBO(q(θ)) =

∫
q(θb) log

π̃(θ)b,X )

q(θb)
dθb + c̃b = −KL(q(θb) || π̃(θb,X )) + c̃b.
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Properties and convergence

• The above previous chain of equations implies that the local maximization of the

ELBO(q(θ)) with respect to the bth term of q(θb) is obtained by setting

q̂(θb) ∝ exp
{
E−b[log π(θ,X )]

}
,

for any b = 1, . . . ,B.

• In practice, the above expectation is often straightforward to compute, and some known

kernel can usually be recognized (as in the Gibbs sampling).

• In the CAVI algorithm, we iteratively update the factors q(θb) by using the locally

maximized terms given the others.

• By construction, this produces a monotonic sequence that convergences to a local

optimum of the ELBO.

• The CAVI is an appealing algorithm for maximizing the ELBO under the mean-field

assumption, but in principle, one could use any other optimizer.

• The necessary computations and expectations are usually doable if the full conditional

distributions belong to some exponential family.

• The algorithm stops whenever the ELBO sequence has converged.
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Underestimation of the variability

• The combination of mean-field assumption + VB approach typically leads to a sensible

underestimation of the variability.

• In the first place, this is a consequence of the insufficient flexibility of the mean-field class

of approximating densities.

• Indeed, if the densities in Q were arbitrarily close to the posterior, this phenomenon would

be negligible.

• In second place, this is a consequence of the chosen divergence. Indeed, the quantity

KL(q(θ) || π(θ | X )) = −
∫
Θ
q(θ) log

π(θ | X )

q(θ)
dθ

favors the choice of densities q(θ) which are included in the support of π(θ | X ).

• Further, there is a large positive contribution to the above KL for those values of θ such

that π(θ | X ) ≈ 0, unless q(θ) ≈ 0 as well.
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The cavi for a Gaussian example

• Let us assume the observations (x1, . . . , xn) are draws from

Xi | µ, τ ∼ N(µ, τ−1), i = 1, . . . , n,

with independent priors µ ∼ N(m0, s20 ) and τ ∼ Ga(a0, b0).

• Assuming a mean-field approximation q(µ, τ) = q(µ)q(τ), the cavi algorithm iterates

between the following steps simple steps.

• Update q(µ). The locally optimal variational distribution for q(µ) is

q(µ)
d
= N(mn, s

2
n ), mn = s2n

(
m0

s20
+ Eq [τ ]

n∑
i=1

xi

)
, s2n =

(
nEq [τ ] +

1

s20

)−1

.

• Update q(τ). The locally optimal variational distribution for q(τ) is

q(τ)
d
= Ga(an, bn), an = a0 +

n

2
, bn = b0 +

1

2

n∑
i=1

Eq

[
(xi − µ)2

]
.
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The Pima dataset

• The logistic regression case has often been presented as an example in which mean-field

variational Bayes can not be applied. See, for example, Section 10.5 of Bishop (2006).

• A priori, we set β ∼ Np(b0,B0).

• Recently, a mean-field approximation for an augmented version of the model has been

proposed (Durante, D. and Rigon, T., 2019).

• We consider a sequence of augmented variables Z1, . . . ,Zn ∼ PG(1, 0), where PG(α, γ)

denotes the Pólya-gamma random variable, i.e.

Z
d
=

1

2π2

∑
j≥1

Gj

(j − 1/2)2 + γ2/(4π2)
,

with Gj ∼ Ga(α, 1), α > 0 and γ ∈ R.

• The density of a Pólya-gamma random variable is expressed in terms of an infinite

summation, but it can be easily simulated.
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The Pima dataset

• The algorithm iterates between two simple steps.

• Update q(β). The locally optimal variational distribution for q(β) is

q(β) ∝ exp [Eq{log π(y , z | β) + log π(β)}]

∝ π(β)

{
n∑

i=1

(yi − 1/2)x⊺
i β −

1

2
Eq [zi ](x

⊺
i β)

2

}

Re-arranging the above equation, we obtain that q(β)
d
= Np(µ,Σ) with

µ = Σ(X⊺(y − 1/2) + B−1
0 b0), Σ = (X⊺Eq [Z ]X + B−1)−1,

where Z = diag(z1, . . . , zn) and its expectation is taken w.r.t. q(z).

• Hence, the optimal variational distribution for β is Gaussian. This is an implication of the

mean-field structure and not an assumption.
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The Pima dataset

• The second step involves the variational distribution q(z).

• Update q(z). The locally optimal variational distribution for q(z) is

q(z) ∝ expEq [log p(y , z | β)]

∝
n∏

i=1

p(zi | 1, 0) exp
(
−
zi

2
Eq [η

2
i ]
)

Re-arranging the above equation, we have

q(z) =
n∏

i=1

PG(1,Eq [η
2
i ]).

• Hence, the optimal variational distribution for z are independent Pólya-gamma

distributions. As before, this is an implication and not an assumption.
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CAVI algorithm with Pima dataset

• We consider again the Pima dataset, using the CAVI algorithm.

• We use a Np(0, 100Ip) as prior distribution.

# prior parameters

b <- rep(0, 8)

B <- diag(100, 8)

# Running the CAVI

fit_CAVI <- logit_CAVI(y, X, B, b)

est_coef <- fit_CAVI$mu

# X Xnpreg Xglu Xbp Xskin Xbmi Xped Xage

# -0.990 0.406 1.097 -0.095 0.072 0.569 0.452 0.284
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Approximate Bayesian

computation



Even more approximate

• In the previous case, we introduced approximate methods to avoid the intractability of

π(θ | X ), with Xi ∈ X and θ ∈ Θ ⊆ Rp , but we assumed that we can evaluate/deal with

π(θ,X ).

• Recall that π(θ,X ) = L(X | θ)π(θ), where the likelihood term is given by

L(X | θ) =
n∏

i=1

f (xi | θ).

• In many scenarios, even evaluating the likelihood is unfeasible, since we have

f (xi | θ) =
1

Zθ
g(xi | θ),

where Zθ < +∞ is an intractable normalizing constant, which depends on the value of θ.

• At the same time, even if we cannot evaluate the density function f (xi | θ) of Xi , in many

scenarios we can easily sample Xi .
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Some examples

• g-and-k distribution, extends the Gaussian distribution with added skewness and

heavier/lighter tails, defined by the quantile function

F−1
gk (u) = a+ b

[
1 + c tanh(gu/2)

]
Φ−1(u)

[
1 + (Φ−1(u))2

]k
,

with Φ−1(·) being the quantile function of a standard Gaussian distribution,

a ∈ R, b > 0, g ≥ 0, k ≥ 0 are location, scale, shape (affecting the skewness) and shape

(affecting the kurtosis) parameters respectively.

• Hidden Potts model, let i ∈ {1, . . . , n} denotes the notes of a lattice (e.g. pixels in an

image), with yi ∈ {1, . . . , k} denotes the node’s ith node’s state. The Potts model is a

Markov random field of the form

P(yi | yi∼ℓ) =
exp

(
θ
∑

i∼ℓ 1[yi=yℓ]

)∑k
j=1 exp

(
θ
∑

i∼ℓ 1[yi=yℓ]

)
where i ∼ ℓ are neighboring nodes of i , and θ ≥ 0.
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Key ideas of ABC

• Suppose we observe X1, . . . ,Xn with

Xi | θ
iid∼ f (xi | θ), and θ ∼ π(θ).

• The intuition of ABC methods is that, once we have a parameter value θ, we generate a

set of synthetic data S1, . . . , Sn.

• If the synthetic data S1, . . . ,Sn are close enough to the observed one X1, . . . ,Xn , then the

data generating process of the synthetic data is similar to the one of the observed data.

• But the two data generating process share the same structure and are indexed by θ. Hence,

if the two set of data are close enough, θ is a reasonable parameter also for X1, . . . ,Xn.

• Such approach can be combined with different sampling strategies and refined to obtain

efficient sampler for posterior arising from intractable likelihood.

• This motivates also labeling these approaches as ”likelihood free methods”,
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Rejection sampler, an old friend

• We recall one of the basic Monte Carlo sampler, the rejection sampler.

• Suppose we want to sample from π(θ | X ) using an auxiliary distribution h(θ). With

rejection sampling we can produce a sample as follows.

At the rth sampling step

i) We generate θ(r) iid∼ h(θ) (independent of the previous state).

ii) Accept θ(r) with probability

π(θ(r) | X )

Kh(θ(r))
, with K ≥ max

θ

π(θ(r) | X )

h(θ(r))
,

otherwise go back to i).

• Here we still have to evaluate the likelihood function, we can extend this algorithm

accommodating for synthetic data.

• The support of h(·) should cover the support of π(θ(r) | X ).
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ABC rejection sampler

• A first intuitive ABC sampler can be obtained as follows.

At the rth sampling step

i) We generate θ(r) iid∼ h(θ) (independent of the previous state).

ii) We generate S iid∼ f (s | θ(r)).

ii) Accept θ(r) with probability

π(θ(r))

Kh(θ(r))
, with K ≥ max

θ

π(θ(r))

h(θ(r))
,

otherwise go back to i).

• We do not need anymore to evaluate the data density function, but just to use it as

sampling mechanism.

• However, having S,X ∈ Xn ⊆ Rd , then we have P(S = X ) = 0.

• Further, when the number of observation is large, using the whole sample information is

slowing the sampler possibly without practical benefits.
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Relaxing the matching condition

• In general, we do not assume an identity function to compare the observe data and the

synthetic one.

• In fact, we require that the observed data are close enough to the synthetic one, for

example requiring that

||X − S|| ≥ ϵ,

for some threshold ϵ ≥ 0 and some distance measure ||·||.

• When ϵ = 0, we go back on the previous rejection sampler and we produce a sample from

π(θ | X ). However, usually we consider ϵ > 0, producing a sample from an approximation

of such a distribution.

• The previous can be further generalized by applying a kernel function to the previous

distance, hence moving from

1[||X−S||≤ϵ] to Kλ(||X − S||) =
1

λ
K

(
||X − S||

λ

)
.

Common choices are the triangular kernel K(u) = (1− |u|)1[|u|≤1] and the Gaussian kernel

K(u) = ϕ(u), with ϕ being the density function of a standard Gaussian distribution.
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Simplify the comparison

• Secondly, when the number of observations increases, the comparison can be based on a

reduced information instead of the whole sample.

• Further, is highly unlikely that S ≈ X can be generated from f (s | θ) for any choice of θ.

• This results in the need of a large scale parameter λ in the kernel function, in order to

achieve decent acceptance rates with the rejection algorithm.

• A common practice is to consider summary statistics of both observed and synthetic data,

and then use those statistics in the comparison

Kλ(||ϕ(X )− ϕ(S)||)

where ϕ(·) : Xn → Rq is a function producing a vector of summaries of X or S.

• This approach actually produce a sample from πABC (θ | ϕ(X )). However, if the vector of

summary statistics is sufficient for the model parameters, then the approximating

distribution corresponds to πABC (θ | X ).
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ABC rejection sampler (better version)

At the rth sampling step

i) We generate θ(r) iid∼ h(θ) (independent of the previous state).

ii) We generate S iid∼ f (s | θ(r)).

ii) Compute the synthetic data summary statistics ψ(S).

iv) Accept θ(r) with probability

Kλ(||ϕ(X )− ϕ(S)||)π(θ(r))

Ch(θ(r))
, with C ≥ Kλ(0)max

θ

π(θ(r))

h(θ(r))
,

otherwise go back to i).

• The observed data summary statistics can be pre-computed once, before the sampling,

saving computational time.

• The degree of approximation we are introducing is tuned by specific choices of λ, K and ||·||.
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The target distribution

• In practice, we are sampling from the joint distribution

π(θ, ϕ(S) | ϕ(X )) ∝ Kλ(||ϕ(X )− ϕ(S)||)L(ϕ(S) | θ)π(θ),

and the posterior ABC distribution si defined as

πABC (θ | ϕ(X )) =

∫
Xn
π(θ, ϕ(S) | ϕ(X ))dS.

• We can see that, as the scale parameter of the kernel decreases, we have

lim
λ→0

πABC (θ | ϕ(X )) ∝
∫
Xn

lim
λ→0

Kλ(||ϕ(X )− ϕ(S)||)L(ϕ(S) | θ)π(θ)dS

=

∫
Xn
δϕ(X )(ϕ(S))L(ϕ(S) | θ)π(θ)dS = π(θ | ϕ(X ))

• If ϕ(·) is sufficient or it is simply the whole sample, it is apparent that the previous

corresponds to π(θ | X ).
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How much approximate

• We can also quantify the accuracy of an ABC sampler. For simplicity of illustration, let us

consider the a sampler without summary statistics, and an univariate case with a single data

point, x , s ∈ X = R, and ||·|| = |·|.

• We can see that the error committed in approximating the likelihood function (i.e. ignoring

the prior distribution) corresponds to

LABC (x | θ) =
∫

Kλ(|x − s|)L(s | θ)ds =

∫
K(u)L(x − uλ | θ)du.

Using a Taylor expansion, we have

LABC (x | θ) =
∫

K(u)

[
L(x | θ)− uλ

d

dx
L(x | θ) +

u2λ2

2

d2

dx2
L(x | θ)− · · ·

]
du

which can be truncated, with some simplification, in

LABC (x | θ) ≃ L(x | θ) +
λ2

2

d2

dx2
L(x | θ)

∫
u2K(u)du

• Hence, the bias we are committing is given by

bλ(x | θ) =
λ2

2
σ2
K

d2

dx2
L(x | θ),

where we can see that is quadratic in λ and depends on the kernel choice through

σ2
K =

∫
u2K(u)du.
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Interpretation

• There are many way to describe and interpret ABC samplers and their impact on statistical

analysis.

• Commonly (e.g. Blum, 2010), in the ABC setting we are interested in the joint sample

(θ(r),S(r)), and we produce an empirical conditional density of π(θ | X ) by weighting the

θ(r)s by ||S(r) − X ||

• Fearnhead and Prangle (2012) noted that the ABC approximation of the posterior is a

continuous mixture

πABC (θ | X ) ∝
∫

w(S)π(θ | S)dS,

where w(S) ∝ Kλ(||S − X ||)m(X ), with m(X ) being the marginal distribution of X .

• Wilkinson (2013) pointed out that ABC methods can be considered as exact if ||S − X ||
represents an error term (observational error or model misspecification), and Kλ is the error

distribution.
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ABC rejection sampler with Pima dataset

• We consider again the Pima dataset, but using a ABC rejection sampler.

• We use a Np(0, 100Ip) as prior distribution, Np(µ,S) as proposal, and as kernel, we

consider Kλ(||S − X ||) =
(
1
n

∑n
i=1 I[Si=Xi ]

)λ
.

# not informed

S <- diag(100, 8)

mu <- rep(0, 8)

lambda <- 3

# Running the ABCr (R = 3000)

ABCrejectionNI <- ABCrejection(R, lambda, y, X, S, mu)

colMeans(ABCrejectionNI$param)

# X Xnpreg Xglu Xbp Xskin Xbmi Xped Xage

# -2.975 1.978 3.760 1.060 1.640 2.047 1.793 2.402

ABCrejectionNI$acc

# 0.152
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ABC rejection sampler with Pima dataset

• Same but using the Laplace approximation as proposal.

# not informed

S <- vcov(fit_logit)

mu <- coefficients(fit_logit)

lambda <- 3

# Running the ABCr (R = 3000)

ABCrejectionNI <- ABCrejection(R, lambda, y, X, S, mu)

colMeans(ABCrejectionNI$param)

# X Xnpreg Xglu Xbp Xskin Xbmi Xped Xage

# -0.991 0.405 1.097 -0.098 0.068 0.571 0.449 0.284

ABCrejectionNI$acc

# 0.995
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Improving ABC methods



Motivation

• We can improve our sampler by combining the previous strategy with other sampling

strategy, for example the one presented in the previous sessions.

• In general, we target the joint distribution of parameter vector and summary statistics

π(θ,ϕ(S) | ϕ(X )) ∝ Kλ(||ϕ(S)− ϕ(X )||)L(S | θ)π(θ)

• Samples of θ can be obtained by sampling jointly (θ,S) and marginalizing by discarding S.

• Ideally, we will see ...
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ABC importance sampling

• We discussed that importance sampling is a procedure that, in the spirit of rejection sampler,

use an instrumental distribution to propose possible values of the quantity of interest.

However, rather than calculate acceptance probabilities, produce a weighted sample.

• Once we draw a candidate θ(r) ∼ q(θ(r)), we also compute a weight associated to this

value, w(θ(r)) = π(θ(r) | X )/q(θ(r)).

• From the previous, it is easy to see that

Eq [w(θ)g(θ)] =

∫
g(θ)w(θ)q(θ)dθ =

∫
g(θ)π(θ | X )dθ = Eπ[g(θ)],

which can be approximated via Monte Carlo methods.

• When the target distribution is not normalized, we simply used a normalized version of the

weights

W (r) =
w(θ(r))∑R
r=1 w(θ(r))

.
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ABC importance sampling

• In the following slides, we do not consider the summary statistics case. However, everything

here presented can be done also using summaries of the samples, both observed and

synthetic.

• From an ABC perspective, importance sampling works similarly to rejection sampling.

• Our target distribution of the importance sampling is πABC (θ,S | X ), and the proposal

(importance) distribution is of the form q(θ,S) = L(S | θ)q(θ), defined jointly on the

parameter and sample spaces.

• As results, the unnormalized importance weights are

w(θ) ∝
πABC (θ,S | X )

q(θ,S)
∝

Kλ(||S − X ||)π(θ)
q(θ)

,

which is free of the intractable likelihood term.

• The choice of the importance distribution q(θ) is crucial for the algorithm performances.
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importance ABC in practice

At the rth sampling step

i) We generate θ(r) iid∼ q(θ) (independent of the previous state).

ii) We generate Si
iid∼ f (s | θ(r)), for i = 1, . . . , n.

ii) Compute the importance weights

w(θr ) =
Kλ(||S − X ||)π(θ(r))

q(θ(r))
.

• The result is a weighted sample, which can be possibly resampled.

• The kernel choice impacts on the resulting weights. Specifically, if the kernel has

non-compact support, the importance weights are guaranteed to be always non-zero.

However, this may results in high variability and low ESS of the sampler.
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Importance ABC sampling with Pima dataset

• We consider again the Pima dataset, but using a ABC importance sampler.

• We use a Np(0, 100Ip) as importance distribution, Np(µ,S) as proposal, and as kernel, we

consider Kλ(||S − X ||) =
(
1
n

∑n
i=1 I[Si=Xi ]

)λ
.

# not informed

S <- diag(100, 8)

mu <- rep(0, 8)

lambda <- 3

# Running the ABCis (R = 3000)

ABCimportanceNI <- ABCimportance(R, lambda, y, X, S, mu)

colMeans(ABCrejectionNI$param)

# X Xnpreg Xglu Xbp Xskin Xbmi Xped Xage

# -3.639 1.782 3.760 1.013 1.403 2.154 1.812 2.388

ABCrejectionNI$acc

# ESS
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Importance ABC sampling with Pima dataset

• Same but with Laplace approximation as importance distribution.

# not informed

S <- vcov(fit_logit)

mu <- coefficients(fit_logit)

lambda <- 3

# Running the ABCis (R = 3000)

ABCimportanceI <- ABCimportance(R, lambda, y, X, S, mu)

colMeans(ABCrejectionNI$param)

# X Xnpreg Xglu Xbp Xskin Xbmi Xped Xage

# -1.064 0.348 1.089 -0.092 0.086 0.539 0.428 0.326

ABCrejectionNI$acc

# 14.263
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ABC-MCMC

• As we saw earlier in the days, MCMC can be used to define sampling strategies. In

particular, with some regularity assumptions, it is possible to produce suitable algorithm

whose transition kernel produce a Markov Chain which is ergodic to a specific target

distribution.

• Among others, a broad class of algorithm is given by the Metropolis-Hastings algorithm,

where given a current state θ(r), we propose a candidate from q(θ | θ(r−1)) and then accept

such a value with probability

α(θ,θ(r)) = min

{
1,

π(θ | X )q(θ(r−1) | θ)
π(θ(r−1) | X )q(θ | θ(r−1))

}
.

• it is only natural that MCMC-based ABC algorithms have been studied, as they combine

both the tractability of ABC methods, and the feature of MCMC algorithms, such as

Markovian dependence over time.

• ABC MCMC algorithms were originally studied by Marjoram et al. (2003), an later

extended in many directions, by considering different MCMC strategies.

38/40



ABC-MCMC

• In an ABC setting, the target distribution is πABC (θ,S | X ), whereas possibly we

marginalize S.

• Hence, our proposal distribution works on the product space Θ× Xn. In practice, we want

to have (Markovian) memories only for the parameter values. Hence, our proposal usually

has form

q(θ,S | θ(r−1),S(r−1)) = q(θ | θ(r−1))L(S | θ),

so that the synthetic data are sampled independently from the past.

• The resulting acceptance rate equals

α(θ,S | θ(r−1),S(r−1)) = min

{
1,

πABC (θ,S | X )q(θ(r−1),S(r−1) | θ,S)
πABC (θ(r−1),S(r−1) | X )q(θ,S | θ(r−1),S(r−1))

}

= min

{
1,

Kλ(||S − X ||)π(θ)q(θ(r−1) | θ)
Kλ(||S(r−1) − X ||)π(θ(r−1))q(θ | θ(r−1))

}
.

• Note that, the previous acceptance rate does not involve the intractable likelihood term.
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ABC-MCMC in practice

At the rth sampling step

i) We generate θ
iid∼ q(θ | θ(r−1)).

ii) We generate Si
iid∼ f (s | θ), for i = 1, . . . , n.

ii) With probability

α(θ,S | θ(r−1),S(r−1)) = min

{
1,

Kλ(||S − X ||)π(θ)q(θ(r−1) | θ)
Kλ(||S(r−1) − X ||)π(θ(r−1))q(θ | θ(r−1))

}

set (θ(r),S(r)) = (θ,S), otherwise (θ(r),S(r)) = (θ(r−1),S(r−1)).

• The algorithm satisfies the detailed balanced condition on πABC (θ,S | X ).

• The algorithm can be sensible to the initial condition.

• Thus, the strategy can be combined with specific proposal (e.g. MALA).
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