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Introduction

Welcome back GLMs!

Generalized linear models (GLMs) are... a generalization of ordinary linear models.
They extend the previous slide block modeling strategies mainly in two directions:

→ the relation between the linear predictor and the response variable can be
non-linear;

→ the dispersion can be non-homogeneous when the covariates vary over their
support.

Given a response variable Y taking values in Y ⊆ R and a set of covariates
x ∈ X ⊆ Rp , GLM is composed by three main terms, which describes the response
variable and its connection with the covariates:

→ a distributional assumption for the response variable Y ∼ f (y | −), which plays
the role of likelihood term;

→ a linear predictor, which is defining a linear combination of the covariates with a
set of parameters η = xᵀβ, with x ∈ Rp ;

→ a link function g(·), which is linking the linear predictor with the expectation of
the response variable

E[Y | x,β] = µ = g−1(η).
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Introduction

Regarding the distributional assumption, we consider distributions belonging to the
exponential family. Specifically, we assume that the generic Y | x ∼ EF(θ, ψ) has
density function of the form

f (y | θ, ψ) = exp

{
yθ − b(θ)

ψ
+ c(y , ψ)

}
, i = 1, . . . , n.

→ θ is the natural parameter of the exponential family.

→ ψ is the scale parameter, shared among all observations.

• The function b(·) and the parameter ψ are common to all the observations.
Further, all the functions b(·), c(·, ·), g(·) are assumed to be known.

• Mean and variance have a nice explicit form, with

E[Y ] =
d
dθ

b(θ) = µ, var(Y ) = ψ ×
d2

dθ2 b(θ) = ψV (µ).

V (µ) is called the variance function.
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Introduction

To recap, the model is specified by the following three quantities

Yi | ηi ∼ EF(b(θi ), ψ)︸ ︷︷ ︸
error structure

, g(µi ) = ηi︸ ︷︷ ︸
link function

, ηi = xᵀ
i β︸ ︷︷ ︸

linear predictor

, i = 1, . . . , n.

• The observations are sampled from independent random variables, where the
generic Yi has distribution EF(b(θi ), ψ), with

E[Yi ] = µi = d/dθib(θi ), i = 1, . . . , n.

• There exists a function g(µi ) = xᵀβ, where xi is a vector of constants and β a
vector of parameters.
→ Some choices are better than others.
→ If we set g(µi ) = θi so that ηi = θi , we get the canonical link function.

• Many known distribution can be rewritten in this specific form.
→ Bernoulli distribution (binary response);
→ Poisson distribution (count response);
→ Gamma distribution (positive real-valued response);
→ ...
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An intuitive example

Classification represents one of the fundamental approaches in statistical modelling.

• Suppose, for example, that we want to model an
elector vote, with two possible choices - party A or B.

• This is a classical classification problem, whereas
taking one of the possible outcomes as reference, e.g.
A, we want to model the success probability of
casting the vote for A.

• Usually, we have some covariates that we want to use
for explaining the success probability.

Ideally, it is reasonable to assume the vote to be distributed as a Bernoulli distribution

Yi ∼ Be(θi ),

with θi being the success probability.

The success probability is a function of a vector of covariates, multiplied by a suitable
vector of parameters, of the form

θi = g−1(xᵀ
i β).

→ Different functions g lead to different classification models.
→ In the following, we consider models for binary classification. Generalizations to

more than two labels are straightforward. 5/41



Probit regression model



Probit regression model

The first GLM we are considering from a Bayesian perspective is the probit regression
model.

• Such a model is obtained considering either a binomial or Bernoulli distriubution
for the data.

• The model is suited for scenarios where we have a binary or discrete response
variable, and we want to explain such a variable as function of some covariates.

• The link function is not the canonical one. Instead, we consider the so called
probit function.

The model specification we are considering in the following slides is

Yi | θi
ind∼ Be(θi )︸ ︷︷ ︸

error structure

, θi = Φ(ηi )︸ ︷︷ ︸
inverse link function

, ηi = xᵀ
i β︸ ︷︷ ︸

linear predictor

, i = 1, . . . , n,

where Φ(·) denotes the cdf of a standard normal distribution.

→ Yi ∈ {0, 1} binary observations.

→ ηi is the linear predictor, convoluting the covariates domain (Rp) to a real space.

→ Φ is mapping a real space into (0, 1).

→ The Bernoulli distribution takes as argument a (0, 1) value, which is playing the
role of success rate.
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Probit regression model

With the previous model, the likelihood becomes

L(y1:n | x1:n,β) =
n∏

i=1
Φ(xᵀ

i β)
yi
[
1 − Φ(xᵀ

i β)
]1−yi

=
n∏

i=1

{
1[yi=1]Φ(xᵀ

i β) + 1[yi=0]
[
1 − Φ(xᵀ

i β)
]}

with 1[·] denoting the indicator function.

Assuming, e.g., a multivariate Gaussian prior π(β) for the regression coefficients, a
posteriori we have

π(β | y1:n, x1:n) =

π(β)
n∏

i=1
Φ(xᵀ

i β)
yi
[
1 − Φ(xᵀ

i β)
]1−yi

∫
Rp
π(β)

n∏
i=1

Φ(xᵀ
i β)

yi
[
1 − Φ(xᵀ

i β)
]1−yi dβ

.

• At first, we don’t recognize a known posterior distribution (recently Durante
identifies a unifies skew normal).

• The normalization constant is intractable.

Maybe we can do a trick to simplify the problem ... 7/41



Probit regression model

We can resort to a data augmentation strategy to let the previous model more
tractable.

→ We introduce a set of suitable unobserved latent variables {v1, . . . , vn}, where the
generic vi ∈ R, i = 1, . . . , n.

→ With those latent variables, we can rewrite the likelihood and (hopefully) simplify
the problem.

Consider the following generative model

vi = xᵀ
i β + εi , εi

iid∼ N(0, 1), i = 1, . . . , n,

and then we apply a simple transformation of the unobserved vi s, with

yi = 1[vi>0].

The augmented likelihood function associated with the probit regression model can
be then written as

L(y1:n, v1:n | x1:n,β) =
n∏

i=1
φ(vi | xᵀ

i β, 1)
[
1[vi>0]1[yi=1] + 1[vi≤0]1[yi=0]

]
,

where φ(· | µ, σ2) denotes the density function of a Gaussian distribution with
expectation µ and variance σ2.
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Probit regression model

We can easily see that if we marginalize out the augmented variables v1:n, we recover
the starting likelihood of the model.
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Probit regression model

Hence, in force of the augmentation, we can resort to what we studied about linear
regression to perform inference with a probit model.

We set a priori β ∼ N(b0,Σ0). The posterior distribution is still a multivariate Gaussian
distribution, β | v1:n, x1:n ∼ N(bn,Σn), with

Σn = (Σ−1
0 + XᵀX)−1, bn = Σn(Σ

−1
0 b0 + Xᵀv).

where X denotes the design matrix of the model.

• The model is now tractable, and we saw in the previous slide block how to
produce posterior inference in this scenario.

• However, the posterior distribution is conditioned on covariates and augmented
variables, and we do not observe the latter.

We notice that the distribution of zi | yi , xi ,β is a truncated Gaussian distribution,
with

f (zi | yi , xi ,β) ∝
{
φ(vi | xᵀ

i β, 1)1[vi>0], if yi = 1,
φ(vi | xᵀ

i β, 1)1[vi≤0], if yi = 0.

We can perform posterior inference implementing a Gibbs sampler which sequentially
updates the augmented variables vi s and the regression coefficients β.
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Probit regression model

Commonly, we are interested into performing predictive inference.

→ Assuming we observe the covariates for a future n + 1, xn+1, but not the response
variable, are interested into describing the behavior of Yn+1.

In the previous weeks we saw cases where the predictive distribution of Yn+1 was
available in closed form.

Here, we can use the sampled values from the posterior distribution. Note that

f (yn+1 | xn+1, x1:n, y1:n) =

∫
Rp

f (yn+1 | xn+1,β)π(β | y1:n, x1:n)dβ

≈
1
R

R∑
r=1

f (yn+1 | xn+1,βr ), βr ∼ π(βr | y1:n, x1:n).

We can obtain a predictive sample, e.g., by sampling from each kernel function,
Yn+1 | βr ∼ f (yn+1 | xn+1,βr ).

We can use the previous sample to perform predictive inference, such as:

- point estimates;

- predictive intervals.
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Probit regression model

Example

Let us consider the following response variable and covariates

set.seed(123); betatrue <- c(-1, -2, 2)
z <- round(rnorm(100, 0, 1), digits = 1)
X <- cbind(rep(1, 100), z, z * z)
tempprobs <- pnorm(X %*% betatrue)
y <- sapply(tempprobs[,1], function(x) rbinom(1,1,x))

Consider a GLM with Bernoulli distribution for the response variable and logit link
function, where the linear predictor is given by

ηi = β1 + β2zi + β3z2
i .

• Write down the Gibbs sampler to perform posterior inference with the Bayesian
probit model.

• Produce a sample from the posterior distribution of size 1 000, after discarding
200 observation as burn-in phase.

• Plot the marginal posterior distributions of the regression coefficients.

• Test if β2 is significantly greater than 0.

• Perform predictive inference for the n + 1 observation, with zn+1 = 2. 12/41
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Logistic regression model

The second GLM we consider is the Bayesian specification of the logistic regression
model.

• The model is again obtained with a Binomial or Bernoulli distribution for the
data.

• The model is suited for binary or discrete responses, which we want to explain as
function of some covariates.

• The link function we consider is the canonical one, i.e. the logistic function.

The model specification we are considering in the following slides is

Yi | θi
ind∼ Be(θi )︸ ︷︷ ︸

error structure

, θi = logistic(ηi )︸ ︷︷ ︸
inverse link function

, ηi = xᵀ
i β︸ ︷︷ ︸

linear predictor

, i = 1, . . . , n.

→ Yi ∈ {0, 1} binary observations.

→ ηi is the linear predictor, convoluting the covariates domain (Rp) to a real space.

→ The logistic function is mapping a real space into (0, 1), with

logistic(ηi ) =
eηi

1 + eηi
.

→ The Bernoulli distribution takes as argument a (0, 1) value, which is playing the
role of success rate. 13/41



Logistic regression model

Logistic regression pros

• Interpretability, as the regression coefficients can be interpreted in terms of
log-odds ratios, as

ηi = log

(
θi

1 − θi

)
.

• Natural model specification, as the logit link function is the canonical choice for
Bernoulli/Binomial data.

Logistic regression cons

• Tractability, the likelihood of the model equals

L(y1:n | x1:n,β) =
n∏

i=1

(
eηi

1 + eηi

)yi (
1 −

eηi

1 + eηi

)1−yi
=

n∏
i=1

(
eyiηi

1 + eηi

)

→ We do not recognize at first a function which can combine nicely with a prior.

Recently, an augmentation has been proposed, resorting to a Pólya-gamma
distribution.
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Logistic regression model

The main object we need is the distribution to augment the model.

Definition
We say that Z follows a Pólya-gamma distribution with parameters α > 0 and γ ∈ R,
denoted as Z ∼ PG(α, γ), if

Z d
=

1
2π2

∞∑
`=1

G`
(`− 1/2)2 + γ2/4π2

,

where G` ∼ Gamma(α, 1).

Note that the density function f (z | α, γ) of a PG(α, γ) is expressed as an infinite
summation.

→ But it can be easily simulated.

We can then define the augmented likelihood as

L(y1:n, z1:n | x1:n,β) =
n∏

i=1

1
2

f (zi | 1, 0) exp
{
(yi − 1/2)xᵀ

i β −
zi xᵀ

i β

2

}
.

and recover the starting likelihood by marginalizing z1:n (see the appendix), i.e.,

L(y1:n | x1:n,β) =

∫
Rn

L(y1:n, z1:n | x1:n,β)dz1 . . . dzn.
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Logistic regression model

Note that, under the previous distributional assumptions, we can easily resample the
augmented variables conditionally on the rest, with

Zi | yi , xi ,β ∼ PG(1, xᵀ
i β), i = 1, . . . , n.

Many prior assumptions are possible for the regression coefficient, with the following
one, the PG augmentation leads to conjugacy.

By setting a priori β ∼ N(b0,Σ0), the posterior is still a multivariate Gaussian distri-
bution , β | v1:n, x1:n ∼ N(bn,Σn), with

Σn = (Σ−1
0 + XᵀZX)−1, bn = Σn

[
Xᵀ(y − 1/2) + Σ−1

0 b0
]
,

where

Z = diag(z1, . . . , zn).

• With the previous augmentation, we can define a Gibbs sampling strategy to
perform posterior inference with the logistic regression model.

• The Pólya-gamma distribution can be easily sampled in R, for example with the
rpg.devroye function of BayesLogit package.
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Logistic regression model

Example

Let us consider the following response variable and covariates

set.seed(123); betatrue <- c(-1, -2, 2)
z <- round(rnorm(100, 0, 1), digits = 1)
X <- cbind(rep(1, 100), z, z * z)
tempprobs <- exp(X %*% betatrue) / (1 + exp(X %*% betatrue))
y <- sapply(tempprobs[,1], function(x) rbinom(1,1,x))

Consider a GLM with Bernoulli distribution for the response variable and probit link
function, where the linear predictor is given by

ηi = β1 + β2zi + β3z2
i .

• Write down the Gibbs sampler to perform posterior inference with the Bayesian
logistic model.

• Produce a sample from the posterior distribution of size 1 000, after discarding
200 observation as burn-in phase.

• Plot the marginal posterior distributions of the regression coefficients.

• Test if β2 is significantly greater than 0.
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Logistic regression model

Once we have a sample from the posterior distribution, we can consider functionals of
the regression parameters, and perform inference on them. In the previous example,
we can consider two functionals answering the following questions.

- How the model behaves over the covariate support? we can plot the posterior
distribution over the model space (left plot).

- Given the quadratic form, where is the model changing regime? We can plot the
change point (right plot) and perform tests on it. Note that

θ

1 − θ
= eβ1+β2x+β3x2

,

so that the change happens at x0 = − β2
2β3

.
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regression model



Poisson regression model

We now consider a glm for count data, when data have no
clear upper bounds. In this situation, a realistic assumption
is a Poisson distribution to describe the data behavior.
To this end, consider for example a fabric production,
where we are producing a linen sheet of a specific requested
length. We are interested into modelling the expected
number of defects Yi as function of the produced length
zi , for the generic ith produced piece.

• A realistic model assumption is to consider some function of the produced length
of the form

E[Yi | xi , ..] = λi = α1xα2
i = elogα1+α2 log zi

→ α1 is a scalar term multiplying the length, i.e., the baseline expected number of defects
when the length is equal to 1.

→ α2 is a stress parameter, as far the production is getting longer we can expect an
increased number of defects.

→ The dispersion of yi increases as far zi is increasing.

• Ideally, this is an example of Poisson regression with the canonical link function.

19/41



Poisson regression model

Being more formal, we have as usual a sequence of observations and covariates,
{yi , xi}, for i = 1, . . . , n.

• The data are now count data, assumed to be described by a Poisson distribution.

• The link function is the canonical one, which in this case corresponds to the
logarithm.

The model specification we are considering in the following slides is

Yi | λi
ind∼ Poi(λi )︸ ︷︷ ︸

error structure

, λi = exp(ηi )︸ ︷︷ ︸
inverse link function

, ηi = xᵀ
i β︸ ︷︷ ︸

linear predictor

, i = 1, . . . , n.

→ Yi ∈ N non-negative discrete observations.

→ ηi is the linear predictor, convoluting the covariates domain (Rp) to a real space.

→ The exponential function is mapping a real space into R+.

→ The Poisson distribution takes as argument a R+ value, which is playing the role
of expected count value.
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Poisson regression model

We remark that the expectation of Yi can be written as

E[Yi | xi ,β] = exᵀi β =

p∏
j=1

exi,jβj ,

hence, the generic βj coefficient has an exponential-multiplicative effect on the
expected count, as far xi,j increases by a unit value.

Under the previous model assumption, the likelihood function becomes

L(y1:n | x1:n,β) =
n∏

i=1

e−λiλyi
i

yi !
=

n∏
i=1

e−exᵀi β
(

exᵀi β
)yi

yi !
.

• Given a vector of observed covariates, each term contributing in the likelihood
function is the pmf of a Poisson distribution with expectation and variance equal
to exᵀi β.
→ As far as the magnitude of the product between covariates and regression coefficients

increases, we expect higher counts and dispersion.
• We do not recognize any augmented for the previous likelihood.

→ Inference can be done resorting to computational approaches, such as implementing the
model in STAN and sampling with an Hamiltonian Monte Carlo.

• The previous model can be extended in many directions, e.g., zero-inflated model
and over-dispersed model (mixture of Poisson).
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Poisson regression models

Example

Let us consider the following response variable and covariates

set.seed(123); betatrue <- c(-1, -2, 2)
z1 <- round(rnorm(100, 0, 1), digits = 1)
z2 <- round(rnorm(100, 0, 1), digits = 1)
X <- cbind(rep(1, 100), z1, z2)
tempprobs <- exp(X %*% betatrue)
y <- sapply(tempprobs[,1], function(x) rpois(1,x))

Consider a GLM with Poisson distribution for the response variable and log link function,
where the linear predictor is given by

ηi = β1 + β2zi,1 + β3zi,2.

• Write down the STAN model to perform posterior inference.

• Produce a sample from the posterior distribution of size 1 000, after discarding
1 000 observation as burn-in phase.

• Plot the marginal posterior distributions of the regression coefficients.
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Gamma regression model

In many real applications, we observe positive real-valued responses. In this scenarios,
we have two possible choices: to transform the response variable into real-valued
scalars, or to model directly what we observe.

• Consider, for example, PC prices. Unfortunately, prices
cannot be negative (i.e., no one is paying us for
getting a new computer). Prices can be assumed to
take support over the positive real line.

• In practice, we might be interested to model these
prices as function of some specific characteristic of the
computers, such as processor model, ram size and
frequency, hard disk size, GPU ...

Usually, one can transform the price taking for example the logarithm, and use this
transformed variable in a linear regression model.

→ Equivalent to work with log-normal distributed errors and multiplicative
exponential covariates effects.

In the following we consider the Gamma GLM case.
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Gamma regression model

As usual, we have a sequence of observations and covariates, {yi , xi}, for
i = 1, . . . , n.

• The data take support on R+, and are assumed to be distributed as a gamma
random variable.

• The link function is the logarithm one, which in this case corresponds to the
reciprocal function.

The model specification we are considering is

Yi | µi
ind∼ Gamma(µi , α)︸ ︷︷ ︸
error structure

, µi = eηi︸ ︷︷ ︸
inverse link function

, ηi = xᵀ
i β︸ ︷︷ ︸

linear predictor

, i = 1, . . . , n.

→ Yi ∈ R+ non-negative observations.

→ ηi is the linear predictor, convoluting the covariates domain (Rp) to a real space.

→ The exponential function is mapping a real space into R+.

Note that here we are using the (µi , α) parametrization of the gamma random
variable, for which E[Yi ] = µi , var(Yi ) =

µ2
i
α

and

f (yi | µi ) =
1

Γ(α)

(
α

µi

)α
yα−1

i e−
α
µi

yi ,

i.e., starting from the shape/rate (α, β) parametrization, we set α = α and µ = α/β. 24/41



Gamma regression model

A peculiarity of the gamma regression model.

• For the linear regression model of the previous week, var(Yi ) = σ2 constant.

• For the Poisson regression model, var(Yi ) = µi , non-constant and linear.

• For the Gamma regression model, var(Yi ) =
µ2

i
α

, non-constant and quadratic.

As result, the coefficient of variation of the Gamma regression model

CV =

√
var(Yi )

µi
=

1
√
α

is constant and driven by α.

• The Gamma regression model is useful when we want to model positive-real
valued responses, keeping the coefficient of variation constant.

• The relation between linear predictor and response should be reciprocal.

• For other relations, different models are more appropriate (e.g., log-normal
regression model with log/exp relation).
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Gamma regression model

Similarly to the Poisson case, the expectation of Yi can be written as

E[Yi | xi ,β] = exᵀi β =

p∏
j=1

exi,jβj .

The generic βj coefficient quantifies the exponential-multiplicative effect on the
expectation Yi , when xi,j increases by a unit value.

Under the previous model assumption, the likelihood function becomes

L(y1:n | x1:n,β) =
n∏

i=1

1
Γ(α)

(
α

µi

)α
yα−1

i e−
α
µi

yi

=
1

Γ(α)

( n∏
i=1

α

xᵀ
i β

)α
yα−1

i exp

{
−α

n∑
i=1

yi
xᵀ

i β

}
.

• Also for the Gamma case, we do not recognize any augmented for the previous
likelihood.
→ Inference can be done resorting to computational approaches, such as implementing the

model in STAN and sampling with an Hamiltonian Monte Carlo.
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Gamma regression models

Example

Let us consider the following response variable and covariates

set.seed(123); betatrue <- c(-1, -2, 2)
z1 <- round(rnorm(100, 0, 1), digits = 1)
z2 <- round(rnorm(100, 0, 1), digits = 1)
X <- cbind(rep(1, 100), z1, z2)
tempprobs <- exp(X %*% betatrue)
y <- sapply(tempprobs[,1], function(x) rpois(1,x))

Consider a GLM with Poisson distribution for the response variable and log link function,
where the linear predictor is given by

ηi = β1 + β2zi,1 + β3zi,2.

• Write down the STAN model to perform posterior inference.

• Produce a sample from the posterior distribution of size 1 000, after discarding
1 000 observation as burn-in phase.

• Plot the marginal posterior distributions of the regression coefficients.
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Mixed models

A natural extension of linear models and GLMs is given by considering mixed models.

In a mixed environment, we observe covariates but we also have access to a grouping
information of our observations (hence, it can be viewed as a covariate as well...).

• Suppose, for example, we observe the gestational time
for different woman, sampled from several hospitals.
→ We want to model the gestational time as function of

some covariates we measure, such as life habits (e.g.
smoker or not, drinks alcohol or not, etc) and biometric
measures.

→ The hospitals are spread across the country, and it is
reasonable to assume that they can have eventually
different covariate effects.

• The idea of mixed model is to consider some of the
regression coefficients to be group-specific, that can
vary group by group.

We can easily deal with this family of model also in a Bayesian setting, by suitably
choosing an appropriate prior distribution.
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Mixed models

We consider a set of real-valued response variables y1, . . . , yn and real-valued or
discrete-valued covariates {zi,1, . . . , zi,p}, i = 1, . . . , n.

Here, data are divided into k ≥ 1 groups. Hence, we further observe a sequence of
allocation variables {c1, . . . , cn}.

→ The generic ci takes value in {1, . . . , k}, for i = 1, . . . , n.

→ The generic ci = j if the ith observation belongs to group j.

We denote by

• xi = (xi,1, . . . , xi,p)ᵀ the covariates associated to fixed effects, whose regression
coefficients are given by the vector β, out of zi and after possible transformation;

• ui = (ui,1, . . . , ui,q) the covariates with random effects, i.e. group-specific
effects, γ, out of zi and after possible transformation.

A first model specification, for linear regression mixed models, is given by

yi = xᵀ
i β + uᵀ

i γci + εi ,

where εi ∼ N(0, 1). The same model can be expressed in matrix notation,

y = Xβ + Uγci + ε,

with X being a n × p matrix whose ith row is given by xᵀ
i , U a n × q matrix with ith

row equal to uᵀ
i , and ε ∼ N(0, σ2In). 29/41



Mixed models
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The figure shows a simple linear regression
model, with random slope and intercept.

We can appreciate how different grouping the
data helps to understand and explain relation-
ships between the response variable and the co-
variates - think about modelling the whole data
without knowing the groups.

Some remarkable cases are the following.

• If there are no covariates in ui , i.e. is an empty set, or γj = 0, for any
j = 1, . . . , k, the model collapse on a classical linear model with covariates X and
regression coefficients β.

• If u contains only the intercept term, e.g.

ui = 1, γj = γj ,

the model is a linear model with random intercept. We assume there is a
systematic group effect on the response variable, but no differences in other
regression coefficients. 30/41



Mixed models

A peculiarity of this model specification is that the information is borrowed across
different group through the main effects, however some information is group specific.

We depart from the exchangeability assumption we saw in the first slide block,
whereas the observations now have a more complicated underlying structure.

Theorem (De Finetti, 1939)

The sequence Y1:n, given a group allocation C1:n, is partially exchangeable if and only
if there exists a probability measure Q such that, for A = A1 × · · · × An, we have

P(Y1:n ∈ A) =

∫
Θ

k∏
j=1

∏
i:Ci=j

P(Yi ∈ Ai | θ)q(dθ).

• Partially exchangeable means that the marginal distribution of Y1:n is invariant
with respect to group-specific permutation, i.e.

L(Y1, . . . ,Yn) = L
(

YσC1 (1)
, . . . ,YσCn (n)

)
,

where σj : Nnj → Nnj is a permutation of {1, . . . , nj}, and nj is the number of
observations such that Ci = j

• In our specific case, our mixed effect model assumes that observations are
exchangeable within groups but not across groups.
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For the linear regression mixed model case, the likelihood equals

L(y1:n | x1:n, u1:n, c1:n,β,γ) = (2π)−n/2(σ2)−
n/2 exp

{
−

n∑
i=1

1
2σ2 (yi − xᵀ

i β − uᵀ
i γci )

2
}
.

We recognise an expression similar to the linear regression model one, with an extra
term. Hence, we consider a similar prior distribution.

The model specification is completed by setting the following distributional assump-
tions.

Yi | xi , ui , ci ,β,γci = xᵀ
i β + uᵀ

i γci + εi , εi ∼ N(0, σ2),

β ∼ N(b0,Σ0),

γj ∼ N(τ0,Φ0), j = 1, . . . , k,

σ2 ∼ IG(a0, b0).

• As usual, the prior distributions for fixed and random effect should be dispersed
enough over their support, i.e. Σ0 and Φ diagonals should be large enough.

• The previous specification assumes independent priors on the parameters of
interest.
→ We can write explicitly the full conditional distributions for this specification.
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The likelihood function can be factorize as

L(y1:n | x1:n, u1:n,β,γ) =
k∏

j=1
(2π)−nj/2(σ2)−

nj/2 exp

−
∑

i:ci=j

1
2σ2 (yi − xᵀ

i β − uᵀ
i γj)

2

 .

Then we have
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From the previous derivation, it is apparent that the independent prior distribution
specification leads to conjugacy. Specifically, a posteriori we have

β | y1:n, x1:n, u1:n, c1:n,γ1:k , σ
2 ∼ N(bn,Σn),

γj | y1:n, x1:n, u1:n, c1:n,β, σ
2 ∼ N(τn,Ψn), j = 1, . . . , k,

σ2 | y1:n, x1:n, u1:n, c1:n,β,γ1:k ∼ IG(an, bn),

where

bn = Σn

(
Σ−1

0 b0 +
Xᵀyγ

σ2

)
, Σn =

(
Σ−1

0 +
XᵀX
σ2

)ᵀ

τn = Ψn

(
Ψ−1

0 τ0 +
Uβj yβj
σ2

)−1

, Ψn =

(
Ψ−1

0 +
Uᵀ

j Uj

σ2

)−1

,

an = a0 +
n
2
, bn = b0 +

1
2

n∑
i=1

(
yi − xᵀ

i β − uᵀ
i γci

)2
.

→ The previous full conditional distributions can be used iteratively in a Gibbs
sampler scheme to perform posterior inference.

Note that centering the random effects distribution apart from 0 can impact on the
model’s identifiability. Further, in presence of random intercept, we can suppress the
common one. 36/41
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Example

Let us consider the following response variable and covariates

set.seed(123); betatrue <- c(-1, -2, 2);
gammatrue <- rbind(c(2, 4), c(-2, -4))
z1 <- round(rnorm(100, 0, 1), digits = 1)
z2 <- round(rnorm(100, 0, 1), digits = 1)
z3 <- round(rnorm(100, 0, 1), digits = 1)
z4 <- round(rnorm(100, 0, 1), digits = 1)
c <- rep(c(1, 2), each = 50)
X <- cbind(rep(1, 100), z1, z2)
U <- cbind(z3, z4)
tempmeans <- as.vector(X %*% betatrue) +
apply(cbind(U,gammatrue[c,]), 1, function(x) x[1:2] %*% x[3:4])
y <- sapply(tempmeans, function(x) rnorm(1, x, 1))

Consider a linear regression mixed model, with

yi = β1 + β2zi,1 + β3zi,2 + γci ,1zi,3 + γci ,2zi,4 + εi .

with εi ∼ N(0, σ2).
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• Implement a Gibbs sampler to perform sampling from the posterior distribution of
a linear regression mixed model.

• Sample from the posterior distribution of fixed effects, random effects and
variance parameters of a linear regression mixed model, with the specification
given in the previous slide, assuming a priori

β ∼ N(0, diag(103, 3)),

γ ∼ N(0, diag(103, 2)),

σ2 ∼ IG(2, 1).

• Provide a first assessment of algorithm mixing and convergence.

• Provide a graphical illustration of fixed and random effect distributions,
comparing random effects of different groups.

Suppose we observe covariates, but not the response variable, for a future n + 1 obser-
vation, for which we have z1 = 2.2, z2 = −1.1, z3 = 1.4, z4 = −0.7.

• Provide a graphical illustration of the predictive distribution for the n + 1
observation.
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In the previous specification of mixed models we have considered linear models.
However, mixed model can be specified in a GLM framework, by acting on the linear
predictor, as

Yi | ηi ∼ EF(b(θi ), ψ)︸ ︷︷ ︸
error structure

, µi = g−1(ηi )︸ ︷︷ ︸
link function

, ηi = xᵀ
i β + uiγci︸ ︷︷ ︸

linear predictor

,

where the EF distribution can match, for example, one of the distributions presented
early in this slide block.

• We can handle several type of data, possibly divided into distinct groups.
• Usually, we do not have closed expression of the full conditional.

→ Inference can be done resorting to STAN implementation of the model.

• We can also include more grouping levels, if we have data divided in groups, and
then each group divided in subgroups, and so on and so forth.

We will see in the case studies some examples of GLMM, to accommodate different
type of data.
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Data augmentation for logistic regression model

Proof of Pólya-gamma augmentation is outside the purposes of this module. To have
a glimpse on the idea, it is possible to prove the following identity (see Polson et al.,
2018)

(eψ)a

(1 + eψ)b = 2−beκψ
∫ ∞

0
e−zψ2/2f (z | b, 0)dz,

where κ = a − b/2, z ∼ PG(b, 0) and f (z) denotes its density function.

Hence, we have

L(y1:n | x1:n,β) =
n∏

i=1

(
exp{xᵀ

i β}
)yi

1 + exp{xᵀ
i β}

∝
n∏

i=1
exp{κi xᵀ

i β}
∫ ∞

0
exp

{
−zi (xᵀ

i β)
2/2
}

f (zi | 1, 0)dzi ,

where κi = yi − 1/2 and zi ∼ PG(1, 0).

We denote by π(β) the prior distribution of the regression coefficients β, here
assumed to be Gaussian.
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Data augmentation for logistic regression model

Then, by disintegrating with respect to zi , we have

π(β | z1:n, x1:n) ∝ π(β)L(y1:n | x1:n,β) = π(β)
n∏

i=1
exp

{
κi xᵀ

i β − zi (xᵀ
i β)

2/2
}

∝ π(β)
n∏

i=1
exp

{ zi
2
(xᵀ

i β − κi/zi )
2
}

∝ π(β) exp

{
−

1
2
(z − Xβ)ᵀZ(z − Xβ)

}
where zᵀ = (κ1/z1, . . . , κn/zn) and Z = diag(z1, . . . , zn). Since β is Gaussian a priori,
the posterior given in the slides follows from straightforward calculations.

Finally, the distribution of the augmented variable is given by an exponential tilting of
the PG(1, 0), since

f (zi | 1, xᵀ
i β) =

exp

(
− (xᵀi β)2

2 zi

)
f (zi | 1, 0)

E
[
exp

(
− (xᵀi β)2

2 zi

)] ,

and then Zi | yi , xi ,β ∼ PG(1, xᵀ
i β), i = 1, . . . , n.
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