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Introduction

Welcome back clustering! Clustering is one of the fundamental techniques in

statistical analysis, and any statistician should know the fundamental approaches.

Suppose we have a sequence Y1, . . . ,Yn of observations, where the generic Yi ∈ Y.
Ideally, in cluster analysis, we aim to identify subsets of observations which result to

be similar in their observed values.

→ Quite a general definition, what does it mean similar?

→ Unsupervised learning.

Here we assume that Y ⊆ Rp , i.e. we aim to produce homogeneous clusters of

real-valued quantities. However, many generalizations can be considered.

In simple scenarios, defining clusters can be

quite trivial.

However, when the number of dimensions

increases, or the domain is getting complex,

we should be more careful in the specifica-

tion of our model.
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Introduction

We mainly distinguish between two different families of clustering approaches.

• Model-based clustering, where we assume the observations to be distributed
according to cluster-specific distributions. Hence, the homogeneity among
observations is driven by a probabilistic models.

→ Quite flexible approach, the group-specific distribution can be any kind of model and it

plays the role of likelihood.

→ The group-specific distribution can be useful also to interpret the data behavior.

→ In this case, we call the joint model mixture model (different from the mixed model of

two slide blocks ago).

• Distance-based clustering, where we use a distance to measure dissimilarities
among observations, and clusters are defined by observation closed to each
others.

→ There are several distances that we can use, depending on specific problems.

→ There is no interpretation in terms of model structure.

→ We do not have an usual likelihood function.

In the following, we will study how to perform cluster analysis with a Bayesian

approach in the first case, where we assume a cluster-specific distribution.
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Model-based clustering with Bayes

The key objects to perform model-based clustering are the so-called mixture models.

A mixture model over Y is nothing but a weighted average of different density functions

or probability mass functions, of the form

f (y) =
k∑

j=1

wjk(y ,θ∗
j ),

where θ∗
j ∈ Θ, j = 1, . . . , k, and k ∈ N ∪ {∞}.

• The sequence w1, . . . ,wk is a sequence of non-negative weights taking values in

the (k − 1)-dimensional simplex space, i.e.

△1
k−1 =

{
w1, . . . ,wk : 0 ≤ wj ≤ 1, j = 1 . . . , k,

k∑
j=1

wj = 1
}
.

• k(y , θ) is a kernel function satisfying the followings:

- k(, θ) is a density function or a probability mass function for any value of θ ∈ Θ;

- k(y , ) is measurable for any value of y ∈ Y.
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Model-based clustering with Bayes
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Model-based clustering with Bayes
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Model-based clustering with Bayes

Pros

• Mixture models are flexible and can capture many complex distributional

behavior, such as multimodality and skewness.

• They are naturally tailored to perform model based clustering, as each component

can represent a single cluster.

• Despite their simple specification, they can accommodate many different type of
data by suitably specifying the kernel function.

→ k(y , θ) d
= N(µ, σ) to cluster univariate data defined on R.

→ k(y , θ) d
= N(µ,Σ) to cluster univariate data defined on Rd .

→ k(y , θ) d
= GP(µ(t),R(t, t′)) to cluster functional data taking values on CX, space of

continuous function with support X.
→ k(y , θ) d

= ERGM(θ) to cluster graph data.

→ . . .

Cons

• The estimation is usually computationally intensive.

• They might be prohibitive with large sample sizes.

• Finite mixture models can be sensible to their specification.
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Model-based clustering with Bayes

To complete the model specification, we need to assume a specific weights

distribution w ∼ π(w), the kernel function k(y , θ), and a distribution for the

cluster-specific parameters θ∗j .

• One common choice for the weights distribution is the Dirichlet distribution, i.e.

w ∼ Dirichlet(α) with

π(w) =
Γ(α1 + · · ·+ αk )

Γ(α1) . . . Γ(αk )

k∏
j=1

w
αj−1

j ,

having support △1
k−1, the k − 1-dimensional simplex with total mass 1.

→ Recall that E[Wj ] =
αj

α+ and var(Wj ) =
αj (α

+−αj )

α+(α++1)
, where α+ =

∑k
j=1 αj .

→ Different choices of α1, . . . , αk lead to different specification.

→ The case α1 = · · · = αk = α is called symmetric.

→ In the symmetric case, common settings are α = 1 or α = 1
k .

• Specific kernel function choices depend on the type of data we are analyzing.

→ If the data are discrete, continuous, functions, etc.

→ If we want a particular feature from the kernel function, such as skewness, heavy tails,

etc.

• The distribution of θ∗
j , denoted by π(θ∗

j ), depends on the kernel assumption.
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Model-based clustering with Bayes

Ideally, we are in a situation where our observed data are distributed according to a

mixture model

Y1, . . . ,Yn | w ,θ∗
1:k

iid∼ f (y) =
k∑

j=1

wjk(y ,θ∗
j )

w ∼ Dir(α),

θ∗
1 , . . . ,θ

∗
k

iid∼ π(θ),

where π(θ) is a suitable prior for the component-specific parameter, matching its

support.

A first augmentation

Equivalently, we can consider a sequence of latent parameters θ1, . . . ,θn, each asso-

ciated to a specific observations, having

Yi | θi ∼ k(yi ,θi ), i = 1, . . . , n

θ1, . . . ,θn | w ,θ∗
1:k

iid∼
k∑

j=1

wjδθ∗
j
(θ),

w ∼ Dir(α),

θ∗
1 , . . . ,θ

∗
k

iid∼ π(θ).
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Model-based clustering with Bayes

We can easily see from the previous that marginalizing with respect to a generic θi the

joint distribution of Yi ,θi | w ,θ∗
1:k , we recover the distribution of Yi | w ,θ∗

1:k .
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Model-based clustering with Bayes

In practice, we are matching each observation with a latent parameter, with the

distributional assumption

θ1, . . . ,θn | w ,θ∗
1:k

iid∼
k∑

j=1

wjδθ∗
j
(θ).

• The previous is a case of random probability measure, since

→ it is a probability measure;

→ both weights w and atoms θ∗
1:k are random quantities.

• Further, the previous is a discrete random probability measure.

→ The sequence of latent parameters θ1, . . . , θn can then have ties, meaning that

P(θi = θj ) > 0, i ̸= j.

→ Ties implies that the observations can be grouped together when the corresponding

latent parameters take the same unique values θ∗
j , hence they are generated from the

same kernel function.

→ This is naturally inducing a clustering within the data, where clusters mean that

observations share the same distribution in a model-based case.
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Model-based clustering with Bayes

Ideally, we have a latent partition induced by ties among latent parameters, defining

equivalence classes. Unfortunately, the space spanning possible partitions is complex

and grows rapidly as far the sample size increases.

• A partition, here denoted by ρn, is then a set of blocks {A1, . . . ,Ak}, where the
generic jth element Aj = {i ∈ {1, . . . , n} s.t. Si = j}, j = 1, . . . , k.

- The sets are disjoint, i.e. Ai ∩ Aj = ∅, for i ̸= j . This means that an element can

belong only to a single cluster.

- The union of all the blocks recover the set of observed indices, i.e.

A1 ∪ A2 ∪ · · · ∪ Ak = {1, . . . , n}.

• We denote by nj the size of each block, i.e. nj = |Aj | =
∑n

i=1 1[Si=j].
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Model-based clustering with Bayes

We have

An,k =
1

k!

k∑
j=0

(−1)j
(k
j

)
(k − j)n

(Stirling number of the second kind) ways to partition n elements in k groups, and

Bn =
n∑

k=1

An,k

(Bell number) ways to partition n elements, which explodes as far n grows.

Scan the entire partitions space is unfeasible in a reasonable time, as far as n ↗.

n 1 2 3 4 5 6 7 8 9 10

Bn 1 2 5 15 52 203 877 4140 21147 115975

In practice, we produce a sample of the posterior distribution obtaining a set of

partitions which are representative of the latent cluster of the data.
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Model-based clustering with Bayes

While the previous augmentation has a nice interpretation, in practice is more

convenient to work with another one.

A second augmentation

We can consider a sequence of latent indicators S1, . . . , Sn, one for each observations

and describing which component is the observation associated to, having

Yi | Si ,θ∗
1:k ∼ k(yi ,θ∗

Si
), i = 1, . . . , n

S1, . . . , Sn | w iid∼ Cat(w1, . . . ,wk ),

w ∼ Dir(α),

θ∗
1 , . . . , θ

∗
k

iid∼ π(θ).

• Two observations i and j , with i ̸= j , are in the same cluster if they are

associated to the same components, i.e. if Si = Sj .

• This different augmentation, even if is not easily interpretable in terms of latent

parameter, is quite useful to perform posterior inference with these models.
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Model-based clustering with Bayes

Also for the second augmentation, we can easily see that marginalizing with respect

to a generic Si the joint distribution of Yi ,Si | w , θ∗
1:k , we recover the distribution of

Yi | w ,θ∗
1:k .
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Model-based clustering with Bayes

With the previous model setting, we are able to derive the full conditional distributions

of the weights w , the group-specific parameters θ∗
1:k , and the augmented variables.

Let us assume a mixture model with a generic kernel function k(y ,θ), a Dirichlet prior

for the weights w ∼ Dir(α), and a suitable prior for the group-specific parameters π(θ).

Then we have

Si | yi ,w ,θ∗
1:k

ind∼ Cat(w1k(yi ,θ∗
1 ), . . . ,wkk(yi ,θ∗

k )), i = 1, . . . , n,

w | S1:n ∼ Dir(α1 + n1, . . . , αk + nk ),

θ∗
j | S1:n, y1:n

iid∼ π(θ∗
j | S1:n, y1:n) ∝ π(θ∗

j )
∏

i :Si=j

k(yi ,θ∗
j ), j = 1, . . . , k,

where nj =
∑n

i=1 1[Si=j] is the number of observations assigned to the jth component

of the mixture.

The previous can guide us in the specification of the prior distributions parameters, in

particular

→ The Dirichlet distribution should be symmetric, in force of the label switching,

whereas each αj can be interpreted as the prior sample sizes of the generic jth

cluster.

→ The prior distribution π(θ∗
j ) depends on the specific kernel function, but usually

is set to be vague or noninformative. 16/35
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Model-based clustering with Bayes

We can exploit the previous full conditionals to derive a sampling strategies to perform

posterior inference with those models, by iteratively sampling the quantities we need.

Conditional algorithm to perform model-based clustering

Input: α1, . . . , αk , parameter of π(θ∗j ). Initial values for θ∗
1:k .

for r = 1 to R do

for i = 1 to n do
Sample the cluster allocation of the ith observation, with

P(Si = j | y1:n,w ,θ∗
1:k ) ∝ wjk(yi ,θ∗

j ), j = 1, . . . , k.

end

for j = 1 to k do
Update the cluster-specific parameters, with

π(θ∗
j | y1:n,S1:n) ∝ π(θ∗

j )
∏

i :Si=j

k(yi ,θ
∗
j ), j = 1, . . . , k.

end

Update the weights with w ∼ Dir(α1 + n1, . . . , αk + nk ), where nj is the size

of the generic jth cluster.

end
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Model-based clustering with Bayes

Example

Let us consider the following data

set.seed(42)

y <- c(rnorm(50, -3, 1), rnorm(25, 3, 1))

We want to cluster those observations, assuming a mixture of univariate Gaussian, using

a N(µ, σ2) as kernel function. Further, we set as prior for the group-specific parameter

µ | σ2 ∼ N(µ, σ2/k0),

σ2 ∼ IG(a0, b0).

• Show that the previous prior assumption is conjugate for the Gaussian likelihood,

with µ, σ2 | y1:n ∼ NIG(mn, kn, an, bn), where

kn = k0 + n, mn = (k0m0 + nȳ)/(k0 + n)

an = a0 + n/2, bn = b0 +
1

2

(
n∑

i=1

(yi − ȳ)2 +
k0n

kn
(ȳ −m0)

2

)
.

• implement a Gibbs sampler to sample from the posterior distribution of the latent

partition in the data. Check the convergence of the algorithm by looking at the

partition entropy at each iteration. 19/35
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Model-based clustering with Bayes

We have a new problem, the so-called label switching.

Once we produce a sample from the posterior distribution of interest, i.e. a sample of

latent partitions ρ1, . . . , ρR , we want to produce summaries of these sampled values,

such as a single point estimate.

Data are assumed to be exchangeable, the model is invariant with respect to

permutation of the data or the components.

Two observations can be both assigned to a specific component at a generic iteration

r , and both to a different component at iteration r + ℓ.

• From a clustering perspective, they belong to the same cluster, but from a label

perspective they have different values.

• In our inferential procedure, we should take in account such a problem.
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Summarizing our posterior inference

We can approach the problem from a decision theory point of view. Let L(·, ·) denotes

a loss function, having two partitions of n elements as arguments. The optimal

partition ρ∗n ∈ B (or equivalently (S∗
1 , . . . , S

∗
n ) ∈ Nn) is the solution of

ρ∗n = argmin
ρ̂n∈B

{E[L(ρn, ρ̂n) | y1:n]}

= argmin
ρ̂n∈B

∑
ρn∈B

L(ρn, ρ̂n)P(ρn | y1:n)


where ρ∗n denotes the optimal partition, ρ̂n the partition we are considering, ρn the

partitions wrt we take the expectation, and P(ρn | Y ) is the posterior probability of

ρn, given a set of observations y1:n.

• The space B is too large

• We can choose L(·, ·) in several ways
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Summarizing our posterior inference

A first loss function that we can consider is the 0− 1 loss function, i.e.

L0−1(ρn, ρ̂n) = 1[ρn ̸=ρ̂n ]

• Such loss function is taking value 1 when all the blocks of ρn and ρ̂n coincide,

and 0 otherwise.

• Is not accommodating possible similarities in the partitions, all the partitions

different from ρ̂n are penalized in the same way

• the point estimate coincides with

argmin
ρ̂n∈B

∑
ρn∈B

1[ρn ̸=ρ̂n ]L(ρn = ρn | Y )

 = argmax
ρ̂n∈B

{L(ρn = ρ̂n | Y )}

the maximum a posteriori of the distribution of ρn.
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Summarizing our posterior inference

A more relaxed loss function: the Binder loss function.

LB(ρn, ρ̂n) =
∑
j<i

[
C11[Si=Sj ]

1[Ŝi ̸=Ŝj ]
+ C21[Si ̸=Sj ]

1[Ŝi=Ŝj ]

]
and by setting C1 = C2 it can be written as

LB(ρn, ρ̂n) =
1

2

 kn∑
i=1

n2i• +

k̂n∑
j=1

n2•j − 2

k̂n∑
j=1

kn∑
i=1

n2ij


It is based on the cluster frequencies, where

- kn is the number of blocks in ρn

- k̂n is the number of blocks in ρ̂n

- nij =
∑n

ℓ=1 1[Sℓ=i ]1[Ŝℓ=j] is the number of observations in the i-th block of ρn
and in the j-th block of ρ̂n

- ni• =
∑k̂n

j=1 nij =
∑n

ℓ=1 1[Sℓ=i ] is the number of observations in the i-th block of

ρn

- n•j =
∑kn

i=1 nij =
∑n

ℓ=1 1[Ŝℓ=j] is the number of observations in the j-th block of

ρ̂n
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Summarizing our posterior inference

You can show that the solution of

ρ∗n = argmin
ρ̂n∈B

∑
ρn∈B

LB(ρn, ρ̂n)P(ρn | y1:n)


is given by the partition which, in binary representation, minimize the distance from

the posterior similarity matrix M, where

Mij = P(Si = Sj | Y )

and

S∗ = argmin
Ŝ∈Nn

∑
i<j

|1[Ŝi=Ŝj ]
−Mij |


The Binder loss function, differently from the 0− 1 loss function, is not penalizing in

the same way the partitions different from the optimal one.
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Summarizing our posterior inference

Let’s check the previous!
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Summarizing our posterior inference

A practical example: consider n = 3, and all the possible partitions are

B = {{1, 2, 3}, {12, 3}, {1, 23}, {13, 2}, {123}}

Equivalently in a binary representation

W1 =

10 1

0 0 1

 , W2 =

11 1

0 0 1

 , W3 =

10 1

0 1 1

 ,

W4 =

10 1

1 0 1

 , W5 =

11 1

1 1 1



and M =

 1

0.8 1

0.2 0.2 1

, then we have

d(W1,M) = 0.82 + 0.22 + 0.22 = 0.72; d(W2,M) = 0.08; d(W3,M) = 0.68;

d(W4,M) = 0.68; d(W5,M) = 1.32,

and the point estimate is given by R2.
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Model-based clustering with Bayes

Upon the previous, we can build an algorithm that produce a point estimate of the

latent partition, under the Binder loss function, starting from a MCMC sample from

the posterior distribution of interest.

Point estimate under Binder loss function

Input: A sample of partitions from the posterior distribution {ρ(1), . . . , ρ(R)}.
Produce an estimate of the posterior similarity matrix M, where

[M]i,j =
1

R

R∑
r=1

1
[S

(r)
i =S

(r)
j ]

for r = 1 to R do
Reconstruct the binary matrix for the rth partition, with

[Wr ]ij =

{
1 : S

(r)
i = S

(r)
j ,

0 : otherwise

Compute the squared distance dr between M and Wr .

end

Return the partitions Rr that minimize the distance.
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Summarizing our posterior inference

Example

Let us consider the previous data

set.seed(42)

y <- c(rnorm(50, -3, 1), rnorm(25, 3, 1))

with the same assumption of the previous example, i.e.using a N(µ, σ2) as kernel func-

tion. Further, we set as prior for the group-specific parameter

µ | σ2 ∼ N(µ, σ2/k0),

σ2 ∼ IG(a0, b0),

that a posteriori leads to µ, σ2 | y1:n ∼ NIG(mn, kn, an, bn), where

kn = k0 + n, mn = (k0m0 + nȳ)/(k0 + n)

an = a0 + n/2, bn = b0 +
1

2

(
n∑

i=1

(yi − ȳ)2 +
k0n

kn
(ȳ −m0)

2

)
.

• Implement an R function to obtain a point estimate with the Binder loss

function, starting from an MCMC output.

• Use the function to find the point estimate with the partitions sampled in the

previous example. 28/35
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The multivariate Gaussian case

A common case while dealing with multivariate real-valued data is to consider a

mixture of multivariate Gaussian distribution. Suppose we observe a sample

y1, . . . , yn. Here, we want to identify clusters of observations where the generic

yi ∈ Rp , i = 1, . . . , n.

In this framework, each term describing a cluster of data is given by a multivariate

Gaussian component, with its own location and covariance matrix.

The kernel function is then given by the density function of a multivariate Gaussian

distribution, which is

f (yi | µ,Σ) = (2π)−p/2|Σ|−1/2 exp

{
−
1

2
(yi − µ)⊺Σ−1(yi − µ)

}
.

• Observations close to the centroid µ belong to the cluster with high probability.

• Implicitly, we are looking at the Mahalanobis distance among observations

belonging to the same cluster.

• The covariance matrix Σ drives the cluster dispersion and shape.
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The multivariate Gaussian case

To implement the algorithm we saw earlier in this slide block, we need first to set a

distribution on the cluster-specific parameters.

• The location parameter µ is a p-dimensional real-valued vector, hence we can

set a multivariate Gaussian distribution.

• The covariance matrix is a p × p positive definite real-valued matrix. A possible

distributional assumption for this parameter is given by the inverse-Wishart

distribution.

Let X be a p × p positive definite real-valued matrix. We say that X is distributed as

an inverse-Wishart distribution, with ν0 degrees of freedom and scale parameter Λ0, if

its density function corresponds to

f (Σ | ν0,Λ0) =
|Λ0|ν0/2

2ν0p/2Γp(ν0/2)
|Σ|−(ν0+p+1)/2e−

1
2
tr(Λ0Σ

−1),

where Γp(ν0/2) = πp(p−1)/4
∏p

j=1 Γ(ν0/2+(1−j)/2) is the mutivariate gamma function.

Note that, with the previous distributional assumption,

E[Σ] = Λ0/(ν0 − p − 1),

defined for ν0 > p + 1. This might help us to specify the parameters ν0 and Λ0.
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The multivariate Gaussian case

Specifically, as prior assumption for the main parameter of the model, we consider an

hierarchical specification of the form

µ | Σ ∼ N(m0,Σ/k0),

Σ ∼ IW (ν0,Λ0).

which is called normal-inverse-Wishart distribution.

Let us assume the data Gaussian distributed. Under the previous prior assumption, we

have

µ | Σ ∼ N(mn,Σ/kn),

Σ ∼ IW (νn,Λn),

with

kn = k0 + n, mn = (k0m0 + nȳ)/kn

νn = ν0 + n, Λn = Λ0 +
n∑

i=1

(yi − ȳ)(yi − ȳ)⊺ +
k0n

kn
(ȳ − m0)(ȳ − m0)

⊺.

Hence, the normal-inverse-Wishart prior assumption is conjugate to the multivariate

Gaussian likelihood.
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The multivariate Gaussian case
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