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Introduction

This slide block presents some of the fundamental strategies to assess a specific

estimated regression model, compare the model with other competitors and improve

the model by slightly changing its specification.

We will tackle mainly the following methodologies.

• How to assess and evaluate the goodness of fit once we have a posterior
distribution, or a sample from such a distribution.
→ Tracing the empirical evidence.

→ Constructing indices based on the empirical evidence.

• How to compare two distinct models, in terms of model fit or other relevant
measures.
→ Fit measures and tests.

• How to select a set of relevant covariates for a particular model specification.
→ Scanning the whole model space.

→ Spike-and-slab priors

• How to relax the model specification and being more vague on the prior guess,

for example resorting to deeper hierarchies in the model setting.

Most of the methodologies here presented are not restricted to regression models we

saw in the last week. However, examples will be related to them.

As before, we assume that we have y1:n ∈ Y ⊆ R response variables that we want to

model as function of x1:n ∈ X ⊆ Rd suitable transformations of covariates.
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Model assessment and comparison

From a frequentist perspective, we know that if we evaluate a density function of an

observation yi at a specific value of a regression parameter θ and possibly other

parameters,

f (yi | xi ,θ),
we are measuring how likely is yi given the probabilistic model assumption we are

taking f (· | ·) and the parameter values θ = {β, . . . }, with θ ∈ Θ.

→ The higher, the better.

Combining more observations, we construct our dear log-likelihood function

ℓ(y1:n | x1:n,θ) =
n∑

i=1

log f (yi | xi ,θ).

At each term of the product in the right-hand side expression, the same of above

applies.

→ Most fit measures and information criteria in the literature are based on likelihood

function transformations, evaluated at a particular point estimate.

→ For historical reasons, predictive accuracy measures are called information criteria.

→ Typically, they are defined as function of the deviance, i.e. −2 logL(y1:n | x1:n, θ).

But what can we do in a Bayesian framework, where the parameter of interest is a

random quantity? 3/28



Model assessment and comparison

Here, we can resort to something that we already saw. We start from the predictive

distribution of our model. For a new observation ỹ , with covariates x̃ , the posterior

predictive distribution is given by

m(ỹ | x̃ , y1:n, x1:n) =
∫
Θ
f (ỹ | x̃ ,θ)π(θ | y1:n, x1:n)dθ,

with π(θ | y1:n, x1:n) being the posterior distribution given the observed sample.

→ Considering the previous, we do not have anymore the problem of having a

random parameter.

Ideally, we can resort to the log-pointwise predictive density

LPPD =
n∑

i=1

logm(yi | y1:n, x1:n) =
n∑

i=1

log

[∫
Θ
f (yi | xi ,θ)π(θ | y1:n, x1:n)dθ

]
.

to measure how much likely are the data under our model setting, once we marginalize

the parameters.

• We are looking at the predictive performance of the estimated model.
• New problem, the posterior predictive in the previous depends on the whole data

→ We use the generic ith observation to both estimate the model and compute the

LPPD. 4/28



Model assessment and comparison

Several different criteria are available in the literature. All of them are somehow

approximating the out-of-sample predictive performance. Hence, all of them have

flaws, but we need to measure the performance of our models.

We distinguish mainly among three families.

• Within sample predictive accuracy. A rough estimate of the expected predictive

distribution of new data is given by what happens with the observed data, such

as the LPPD. In general, quick to evaluate and easy to interpret.

• Adjusted within sample predictive accuracy. Quantities such as AIC, DIC, WAIC

are adjusted measure by a model-complexity term.

• Cross-validation. Ideally, we separate our data in train and test, then we evaluate

predictive performance on a subset of data.

In the following, we present some of the fundamental measures used to evaluate a

model fit.
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Model assessment and comparison

• Akaike information criteria (AIC). Usually, inference on a parameter of interest,

say θ, is summarized by a point estimate θ̂, typically the maximum likelihood

estimate. The AIC is defined as

AIC = −2ℓ(y1:n | x1:n, θ̂ML) + 2p.

- Ideally, ignoring the multiplication by −2, we are adjusting the log-likelihood by

p, the number of parameters in our model. Such a quantity mitigates the fact

that as far as we are increasing more parameters in the model, the predictive

performance increases as well.

- In practice, the correction term adjust for overfitting.

- p plays the role of effective number of parameters.

- As far as we are departing from a linear model with flat prior assumptions, we

cannot simply add p.

- The smaller, the better.
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Model assessment and comparison

• Deviance information criteria (DIC). Somehow, it is a Bayesian extension of

AIC. We replace the maximum likelihood estimate θ̂ML with the posterior mean

of the parameter E[θ | y1:n, x1:n], and the complexity penalization term p with a

data-based correction. Hence, we have

DIC = −2ℓ(y1:n | x1:n,E[θ | y1:n, x1:n]) + 2pDIC ,

where

pDIC = 2
[
ℓ(y1:n | x1:n,E[θ | y1:n, x1:n])− Eθ|y1:n,x1:n [ℓ(y1:n | x1:n,θ)]

]
or

pDIC = 2varθ|y1:n,x1:n (ℓ(y1:n | x1:n,θ))

≈
2

R − 1

R∑
r=1

[
ℓ(y1:n | x1:n,θ(r))− ℓ(y1:n | x1:n,θ)

]
- The smaller, the better.

- The variance term acts as a complexity penalization.

- For linear models with uniform priors, pDIC reduces to k.
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Model assessment and comparison

• Widely applicable information criteria (WAIC). In practice, it is defined as a

penalized version of LPPD, i.e.,

WAIC = −2LPPD+ 2pWAIC,

where, given a MCMC sample {θ(1), . . . , θ(R)} from the posterior distribution

LPPD =
n∑

i=1

logm(yi | y1:n, x1:n) ≈
n∑

i=1

log

[
1

R

R∑
r=1

f (yi | xi ,θ(r))

]
,

and

pWAIC = 2
n∑

i=1

[
logEθ|y1:n,x1:n [f (yi | xi ,θ)]− Eθ|y1:n,x1:n [log f (yi | xi ,θ)]

]
or

pWAIC =
n∑

i=1

varθ|y1:n,x1:n (log f (yi | xi ,θ))

≈
n∑

i=1

1

R − 1

R∑
r=1

[
log f (yi | xi ,θ(r))− log f (yi | xi ,θ)

]
with log f (yi | xi ,θ) = 1

R

∑R
r=1 log f (yi | xi ,θ(r)).

- The smaller, the better.

- The variance term acts as a complexity penalization.

- For large n, LPML ≈ − 1
2
WAIC.
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Model assessment and comparison

In the previous slide, we have been optimist by including, in each term, the same obser-

vation in both the argument of the density function and the conditioning quantities.

• Including the observation in the conditioning arguments may alter the prediction

we are making, especially with small sample sizes.

Instead of the LPPD, we can consider another quantity by replacing m(yi | y1:n, x1:n)
with

m(yi | y−i , x−i ) =

∫
Θ
f (yi | xi ,θ)π(θ | y−i , x−i )dθ,

where y−i and x−i denote y1:n and x1:n but discarding the ith element, respectively.

→ Ideally, we want to perform a leave-one-out cross-validation.

We then resort to the so-called log pseudo-marginal likelihood (LPML), which is given

by

LPML =
n∑

i=1

logm(yi | xi , y−i , x−i ) =
n∑

i=1

log(CPOi ).

where CPOi is called the conditional predictive ordinate for observation i .

→ We have a new problem, we have to estimate n separate models, one for each

observation removed. Or maybe not...
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Model assessment and comparison

We can see that the generic CPOi can be rewritten as
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Model assessment and comparison
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Model assessment and comparison

Hence, suppose we have a MCMC sample {θ(1), . . . , θ(R)} from a generic algorithm.

We can approximate each CPOi as

CPOi = Eθ|y1:n,x1:n

[
1

f (yi | xi ,θ)

]−1

≈
[
1

R

R∑
r=1

1

f (yi | xi ,θ(r))

]−1

,

and then the LPML becomes

LPML ≈
n∑

i=1

log


[
1

R

R∑
r=1

1

f (yi | xi ,θ(r))

]−1
 .

• With the previous expression, we can easily compute the LPML by tracing by
passing as output of our algorithm also the density evaluation for each
observation and each iteration.

→ In STAN we just need to include an extra line of code.

• The LPML can be used raw as fit measure, or transformed for example

introducing a model complexity penalization.
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Model assessment and comparison

Example

Let us consider the following response variable and covariates

set.seed(123); betatrue <- c(-2, 2);

gammatrue <- rbind(c(-1, 2, 4), c(3, -2, -4))

z1 <- round(rnorm(100, 0, 1), digits = 1)

z2 <- round(rnorm(100, 0, 1), digits = 1)

z3 <- round(rnorm(100, 0, 1), digits = 1)

z4 <- round(rnorm(100, 0, 1), digits = 1)

c <- rep(c(1, 2), each = 50)

X1 <- cbind(z1, z2)

U1 <- cbind(rep(1, 100), z3, z4)

X2 <- cbind(rep(1, 100), z1, z2)

U2 <- cbind(z3, z4)

tempmeans <- as.vector(X1 %*% betatrue) +

apply(cbind(U1,gammatrue[c,]), 1, function(x) x[1:2] %*% x[3:4])

y <- sapply(tempmeans, function(x) rnorm(1, x, 1))

Consider the following two linear regression mixed model

LMM1 : yi = β1zi,1 + β2zi,2 + γci ,1 + γci ,2zi,3 + γci ,3zi,4 + ϵi , ϵi ∼ N(0, σ2),

LMM2 : yi = β1 + β2zi,1 + β3zi,2 + γci ,1zi,3 + γci ,2zi,4 + ϵi , ϵi ∼ N(0, σ2). 13/28



Model assessment and comparison

LMM1 has a group-specific intercept term while LMM2 has a shared intercept term.

• Make a variation of the LMM gibbs sampler of slide block 3 to return as output,

for each iteration, also the density evaluation of each observation, given the

current value of the parameter.

• Produce a sample from the posterior distribution of the parameters for LMM1

and LMM2 and check mixing and convergence of the algorithm, assuming a priori

β ∼ N(0,diag(103)), γj ∼ N(0,diag(103)), j = 1, 2, and σ2 ∼ IG(2, 2).

• Write the functions to calculate LPML and WAIC. Evaluate the fit measures for

both the estimated model.

Consider now as third model a linear regression model

LM1 : yi = β1 + β2zi,1 + β3zi,2 + ϵi , ϵi ∼ N(0, σ2).

• Write a function sampling from the posterior distribution of LM1, assuming

β ∼ N(0,diag(103)) and σ2 ∼ IG(2, 2).

• Evaluate the fit measures LPML and WAIC. Compare them with the ones

obtained with LMM1 and LMM2.

• Repeat the previous two points implementing all the models in STAN.
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Model assessment and comparison

Once we estimate more than one model, as commonly done in data analysis, we may

be interested into selecting the best model, with respect to some specific criteria.

As general rule in statistical modelling, a model should be not only good in terms of fit

and predictive performance, but also as simple as possible.

→ Simple model are easy to interpret and explain.

One possible strategies is to calculate for each model quantities like LPML and

WAIC, then rank the model best to worst.

→ However, even if we have a glimpse on possible predictive performance

improvements, we do not see if two model significant differ from each other.

Suppose we have two distinct model, say M1 and M2. One first approach to select a

model can be to perform comparison through tests. Hence, in a quite generic form, we

have

M1 : Yi ∼ f1(yi | x1,i ,θ1), i = 1, . . . , n, θ1 ∼ π1(θ1),

M2 : Yi ∼ f2(yi | x2,i ,θ2), i = 1, . . . , n, θ2 ∼ π1(θ2),

where, for example, the distributional assumption can coincide, f1(· | ·) = f2(· | ·), and
the model can differ only through the covariates which are including.
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Model assessment and comparison

A priori, we assume that P(M1) = τ1 and P(M2) = τ2 = 1− τ1. The posterior

probabilities of the two models can be obtained by first evaluating the marginal

density for the data under M1 and M2, with

mj (y1:n | xj,1:n) =
∫
Θ

n∏
i=1

f (yi | xi ,θj )πj (θj )dθj , j = 1, 2.

→ Recall that the previous measure how likely are y1, . . . , yn under model Mj .

Then, we can compute the posterior model probabilities in force of the Bayes’ theorem

P(Mj | y1:n, x1:n) =
m(y1:n | xj,1:n,Mj )P(Mj )

m(y1:n | xj,1:n)
=

τjmj (y1:n | xj,1:n)
τ1m1(y1:n | x1,1:n) + τ2m2(y1:n | x2,1:n)

,

for j = 1, 2, with P(M2 | y1:n, x2,1:n) = 1− P(M1 | y1:n, x1,1:n).

We can use the previous probabilities, combined with the prior ones, to test if the two

model are significant different from each other, by computing the Bayes factor

BF12 =

P(M1|y1:n)
P(M2|y1:n)

P(M1)
P(M2)

=
m1(y1, . . . , yn)

m2(y1, . . . , yn)
.
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Model assessment and comparison

But what if we have more than two models? A possible strategy is to consider jointly

the posterior probabilities of different models. Suppose we have k ≥ 2 models

M1, . . . ,Mk .

A priori, without any further information, we set the models equally probable

P(Mj ) =
1

k
, j = 1, . . . , k.

Similarly to before, we have different distributional assumptions {fj (yi | xj,i ,βj )}kj=1

and prior assumptions πj (βj ) that lead to different marginal distributions

{mj (yi | xj,1:n)}kj=1.

Hence, we can compute the posterior probability of each model as

P(Mj | y1:n, xj,1:n) =
mj (y1:n | xj,1:n)P(Mj )

m(y1:n | x1:n)
,

where m(y1:n | x1:n) =
∑k

j=1 mj (y1:n | xj,1:n)P(Mj ).

One can then chose, for example, the model which has the largest posterior probability

P(Mj | y1:n, xj,1:n).
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Model assessment and comparison

Example

set.seed(123); betatrue <- c(-4, 2, -4, 0)

z1 <- round(rnorm(100, 0, 1), digits = 1)

z2 <- round(rnorm(100, 0, 1), digits = 1)

z3 <- round(rnorm(100, 0, 1), digits = 1)

X <- cbind(rep(1, 100), z1, z2, z3)

tempprobs <- exp(as.vector(X %*% betatrue)) /

(1 + exp(as.vector(X %*% betatrue)))

y <- sapply(tempprobs[,1], function(x) rbinom(1,1,x))

Consider three distinct logistic models, specifically

M1 : yi ∼ Be(θi ), θi = logit(β1 + β2zi,1 + β3zi,2 + β4zi,3), i = 1, . . . , n,

M2 : yi ∼ Be(θi ), θi = logit(β1 + β2zi,1 + β3zi,2), i = 1, . . . , n,

M3 : yi ∼ Be(θi + β2zi,1), θi = logit(β1), i = 1, . . . , n.

• Write the augmented Gibbs sampler for the logistic model, which is also returning

the pmf of each observation.

• Select the model which maximize the posterior probability.

• Test the selected model versus the simpler one.

• Repeat the previous points in STAN.
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Covariates selection

Suppose we now fix a certain distribution for the data, e.g. a specific model form.

Further, we have a total of p predictors available, with x⊺
i = (xi1, . . . , xip).

A reasonable question that we could ask to ourselves is weather we could find the best

model for the response variable, given all the possible combination of covariates we

can make.

Ideally, if we can estimate all possible models combining the covariates, we can then

select the best one resorting to predictive information criteria as WAIC and LPML.

→ Each covariate can be included or not in the model. We then have 2p possible

distinct models, given p covariates.

→ When p is large, it is unfeasible to estimate all possible models and then select

the best one.

We need an alternative strategy to select the best subset of covariates, without

estimating all possible models.

→ Many different regularization methods that also select covariates have been

studied in the last decades.

→ In the following slides we consider an approach that has proven to be effective

with many model strategies.
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Covariates selection

Here, we present the so called spike-and-slab approach.

• Usually, the marginal distribution of each regression coefficient is diffused on a

real space, hence for the generic jth coefficient βj , we have

P(βj = 0) = 0.

• We augment the prior distribution of the regression coefficients defining a new

prior specification which set positive probability on the 0 value (or on a

neighborhood of 0).

• Such a prior is composed by two components

→ a spike one, concentrating the mass;

→ a slab one, which mimic the diffuseness of usual prior specifications.

In a general setting, we consider a model for which we have

g(E[Y | x ]) = x⊺β, β ∼ π(β).

→ Examples are the ordinary linear regression model, various GLMs, but the prior

specification we are considering here can be embedded also in a mixed model

environment.

→ π(β) usually is assumed to be Gaussian, but other distributions can be considered

here (e.g. the Laplace distribution of slide block 2).
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Covariates selection

At first, we consider an hierarchical specification as follows. We introduce a set of

suitable augmented variables γ⊺ = (γ1, . . . , γp), where each γj ∈ {0, 1}, j = 1, . . . , p.

• The augmented prior can be written in a general form as

π(β,γ) = π(β | γ)π(γ).

• Each γj describes the inclusion or exclusion of the jth covariate in the model,

with

γj =

{
1 : if the jth covariate is included in the model,

0 : otherwise.

• Each one of the possible 2p models is uniquely identified by a specific realization

binary sequence γ⊺ = (γ1, . . . , γp).

• The prior is completed by setting γj ∼ Be(θj ), j = 1, . . . , p, θj ∼ π(θj ), where the

latter is not mandatory but improve the model flexibility, and θj denotes the

probability that βj is large enough to be included in the model.

We have a problem here, the dimension of the parameter space change as far as we are

including or excluding covariates, as well for the prior dimension.

→ There exist suitable computational techniques to deal with this problem.

→ However, we can consider a similar prior specification, but more tractable.
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Covariates selection

Hence, instead of the augmented prior of

before, we use the augmented variables γj s

to construct a mixture prior specification

for each regression coefficient.

• We want to have a diffuse prior apart

from 0, following a specific

distribution.

• We want to a positive probability for

the coefficient of being equal (or

close) to 0.
0.0

0.2

0.4

0.6

−2 0 2

The prior specification we consider is then

βj | γj
ind∼ (1− γj )δ0 + γjN(0, τ2j ),

γj | θj
ind∼ Be(θj ),

θj
ind∼ π(θj ),

for j = 1, . . . , p, where δ0 denotes a Dirac

measure in 0.

• Such a prior is flexible to cover the 2p

possible models, while being tractable.

• If θj = 0.5 for all j = 1, . . . , p, we are

setting an uniform prior over all the

possible 2p models.

• However, we cannot use discrete prior

distribution (such as the Dirac

measure) in STAN...
22/28



Covariates selection

We can consider a slightly relaxed version

of the previous prior, by combining together

two Gaussian distributions.

• A Gaussian distribution with large

variance, which models actually

coefficients different from 0.

• A Gaussian distribution with small

variance, which set mass on a

neighborhood of 0. 0.0

0.2

0.4

−2 0 2

The prior specification is the following

βj | γj
ind∼ (1− γj )N(0, τ2j ) + γjN(0, c2j τ

2
j ),

γj | θj
ind∼ Be(θj ),

θj
ind∼ π(θj ),

for j = 1, . . . , p, for τj > 0 small enough

and cj > 0 large enough.

• The mixture prior distribution for βj is

now manageable in STAN.

• Once we collect a sample from the

posterior distribution, we can check

how many times each regression

coefficient has been sampled from the

spike or the slab component.

• This approach is also called stochastic

search variable selection.
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Covariates selection

A key quantity is the set of values (−κj , κj ) where the spike components dominates

the slab components. The bounds of this set are given by kj = τj ϵj , where

ϵj =

√√√√2
log(cj )c

2
j

c2j − 1
.

→ When we sample a value βj ∈ (−κk , κk ), we say that is close enough for zero.

As already mentioned, the parameter γ⊺ = (γ1, . . . , γp) uniquely identifies a specific

model. Intuitively, we can compare models by looking at the specific posterior

probabilities

P(γ | y1:n, x1:n) =
m(y1:n | x1:n,γ)π(γ)∑

γ∈{0,1}p
m(y1:n | x1:n,γ)π(γ)

,

where

m(y1:n | x1:n,γ) =
∫
Rp

L(y1:n | x1:n,β,γ)π(β | γ)dβ

denotes the marginal distribution of the data including the covariates in γ.
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Covariates selection

Once we simulate a sample from the posterior distribution
(
β(r),γ(r)

)R
r=1

, we are

interested into select a specific set of covariates, in force of the posterior empirical

information we have. We can resort to different strategies, specifically the following.

• Highest posterior probability (HPD), we choose the model with the highest

posterior probability, i.e.

γ̂ = argmax
γ∈{0,1}p

π(γ | y1:n, x1:n) ≈ argmax
γ∈{0,1}p

1

R

R∑
r=1

1[γ(r)=γ],

i.e. the mode of the posterior distribution.

• Median probability model (MPM), we choose the covariates having posterior

probabilities of being included greater than 0.5, i.e.

γj such that π(γj | y1:n, x1:n) ≈
1

R

R∑
r=1

1[γj=1] > 0.5.

• Hard shrinkage (HS), we choose only the covariates that are always included in

the model, i.e.

γj such that π(γj | y1:n, x1:n) ≈
1

R

R∑
r=1

1[γj=1] = 1.
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Covariates selection

Example

Consider the following data generating process

set.seed(123); betatrue <- c(2, 0, 0, -3, 4, 0, -1, -2, rep(0, 12))

X <- cbind(rep(1, 100),

round(matrix(rnorm(1900), ncol = 19), digits = 2))

tempmeans <- X %*% betatrue

y <- sapply(tempmeans, function(x) rnorm(1, x, 1))

Consider a generic linear model yi = x⊺
i β + ϵi , with ϵi ∼ N(0, σ2). We further set a

priori

σ2 ∼ IG(2, 2), βj ∼ (1− θj )N(0, 0.001× 103) + θjN(0, 103), j = 1, . . . , p,

with θ ∼ Beta(1, 1).

• Write the STAN code to sample from the posterior distribution of the model.

• Calculate the intersection point of the Gaussian distributions in the prior

specification of βj .

• Provide the HPD, MPM and HS estimates of the best subset of covariates for the

model, and compare them with the covariates used to simulate the data.
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Relaxing the model specification

Our model specification relies on our prior assumption, which is then updated in our

posterior belief.

• It is possible that the prior guess we are taking it is too strongly concentrated on
a specific part of the parameter space.

→ In the worst scenario, it is strongly concentrated in the wrong part of the parameter

space.

• In force of that, sometimes models are too sensible to the parameter specification.

A simple but effective way to avoid this problem is to include one extra hierarchical

level in your model, by setting a prior distributions on the main hyperparameters of your

model, ideally

Yi | xi ,β ∼ f (yi | xi ,β),

β | θ ∼ π(β | θ),

θ ∼ π(θ).

• Be careful to match the support of θ with the support of the distribution

assumption you are taking.

• In a few situations, you still preserve conjugacy.
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Relaxing the model specification

Example

Consider the following data generating process

set.seed(123); betatrue <- c(2, -3, 4, -2)

X <- cbind(rep(1, 100),

round(matrix(rnorm(300), ncol = 19), digits = 2))

tempmeans <- X %*% betatrue

y <- sapply(tempmeans, function(x) rnorm(1, x, 1))

Consider a generic linear model yi = x⊺
i β + ϵi , with ϵi ∼ N(0, σ2).

• Write the STAN code to sample from the posterior distribution of the model,

considering a priori σ2 ∼ IG(100, 1), β ∼ N(25,diag(0.1)).

• Write now the STAN code to sample from the posterior distribution of the model,

considering a priori

σ2 ∼ IG(a0, b0), β ∼ N(b0,Σ0),

with hyperpriors

a0 ∼ Gamma(0.1, 0.1), b0 ∼ Gamma(0.1, 0.1),

b0 ∼ N(0,diag(103)), Σ0 ∼ Wishart(6, diag(1)).
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