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Introduction

Several modern approaches in various fields, such as climatology, ecology,

environmental health, real estate marketing, etc., face the task of analyzing structured

data that are

• highly multivariate, with covariates and response variables;

• geographically referenced;

• temporally correlated.

Among these, spatial data analysis deals with observations that depend on a specific

continuous domain, which describe their dispersion over a coordinate set.

Those coordinates are providing informations and insights that can be helpful to better

understand and interpret what we are studying.
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Introduction

Spatial data are usually classified into 3 types, depending on the specific structure of

the data.

• Point-referenced data (geostatistical data): Y (s) random vector at location

s ∈ Rr . The coordinate s varies continuously over D, a subset of Rr that

contains a r -dim rectangle of positive volume.

• Areal data: Y (s), s ∈ D, and D is partitioned into a finite number of areal units

with well-defined boundaries.

• Point pattern data: D is random, and the index set of D gives the locations of

random events that are the spatial point pattern. For example, Y (s) = 1 for all

s ∈ D.

As statistician, we want to investigate if the spatial domain has an impact on the data

structure. Specifically, we want to study if there is any spatial pattern in data

Y (s1),Y (s2), . . . ,Y (sn).

→ Spatial pattern suggests that measurements near to each other will tend to take

more similar values than those for units far from each other.

→ Independent measurements for the units no pattern.
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Point-referenced data



Point-referenced data

In this framework, data Y (s) are given at specific locations s ∈ D ⊆ Rr . For example,

Y (s) are level of a pollutant at site s.

While we can assume the existence of a pollutant level at all possible sites, in practice

the data are a partial realization of a spatial process at specific locations {s1, . . . , sn}.

A fundamental object to deal with this type of data is the underlying stochastic

process {Y (s) : s ∈ D}.

We observe the process at fixed locations. Hence, the data we observe are

y1:n = (y(s1), . . . , y(sn))⊺.

• The process is centered in µ(s) = E[Y (s)], which is the mean parameter.

• We also assume that the variance of Y (s) exists at each s ∈ D.

• Usually, we also assume that (Y (s1), . . . ,Y (sn))⊺ is distributed according to a

multivariate Gaussian distribution.
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Point-referenced data
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Locations (we also have topsoil heavy metal concentrations along with a number of

soil and landscape variables at the observation locations) collected in a flood plain of

the river Meuse, near the village of Stein (NL).
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Point-referenced data

A fundamental concept is the stationarity of the underlying process. Under

stationarity, the characteristic of such a processes such as mean, variance and

covariance do not change upon shifting the support.

• The process is said to be strictly (strong) stationary if, for any n ≥ 1, any set of

sites {s1, . . . , sn}, and h ∈ Rr , we have

(Y (s1), . . . ,Y (sn))
d
= (Y (s1 + h), . . . ,Y (sn + h)), with sj + h ∈ D.

• The process is said to be weakly stationary if

→ µ(s) = µ, i.e. constant mean over the spatial domain.

→ For the covariance term, we have

cov(Y (s),Y (s + h)) = C(h), with s + h ∈ D.

In practice, the covariance can be summarized in a covariance function.

• The process is said to be intrinsic stationary if

→ E[Y (s + h) − Y (s)] = 0.

→ Also,

E[(Y (s + h) − Y (s))2] = var(Y (s + h) − Y (s)) = 2γ(h),

depending solely on h, where 2γ(h) is called variogram and γ(h) semivariogram.

Note that: strong stationarity ⇒ weak stationarity ⇒ intrinsic stationarity.
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Point-referenced data

We recall the following relation between the semivariogram and the covariance

function.

γ(h) = C(0)− C(h) ⇔ C(h) = C(0)− γ(h) = lim
||u||→∞

γ(u)− γ(h).

Finally, the model is said to be isotropic if γ(h) = γ(||h||). A model that is both

isotropic and stationary is called homogeneous.

Example: exponential semivariogram/covariance.

γ(d) = γ(||h||) =
{
τ2 + σ2(1− e−ϕd ) if d > 0

0 if d = 0

C(d) = C(||h||) =
{
σ2e−ϕd if d > 0

τ2 + σ2 if d = 0

Nuggets: τ2 = lim
d→0+

γ(d), represent the non-spatial variability

Range: R = 1/ϕ, where ϕ is the decay parameter

Sill: τ2 + σ2 = lim
d→+∞

γ(d)

Note that, for d > 0, we use the notation C(d) = σ2ρ(d , ϕ). 7/24



Point-referenced data

Example: powered exponential semivariogram/covariance.

γ(d) = γ(||h||) =
{
τ2 + σ2(1− e−|ϕd|p ) if d > 0

0 if d = 0

C(d) = C(||h||) =
{
σ2e−|ϕd|p if d > 0

τ2 + σ2 if d = 0

with 0 < p ≤ 2 and ρ(d , ϕ) = e−|ϕd|p .

Example: Gaussian semivariogram/covariance.

C(d) = C(||h||) =
{
σ2e−ϕ2d2 if d > 0

τ2 + σ2 if d = 0

and ρ(d , ϕ) = e−ϕ2d2 .
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Point-referenced data

We introduce a first Bayesian spatial regression model for point-referenced data. We

consider a model of the form

Y (s) = x⊺(s)β + ω(s) + ϵ(s),

where the residual term of the model is partitioned in two parts:

• ω(s) is the spatial residual term, where {ω(s)} is a spatial Gaussian process,

capturing the residual spatial association. Its distribution is indexed by the

dispersion parameters σ2 and ϕ.

• {ϵ(s)} is a sequence of uncorrelated pure error terms, variability at distances

smaller than the smallest interlocation distance, with a distribution indexed by τ2.

Let X be a n × p matrix with x⊺(si ) being its ith row, and ω = (ω(s1), . . . , ω(sn))⊺.
The model specification is completed by setting

Y | ω,β, τ2 ∼ N(Xβ + ω, τ2In),

ω | θ ∼ N(0,Σ(θ)), where [Σ(θ)]ij = σ2ρ(||si − sj ||,θ),

β ∼ N(b0,Λ0),

θ = (σ2, ϕ, τ2) ∼ π(σ2, ϕ, τ2).

where ∼ π(σ2, ϕ, τ2) usually is assumed to factorize in independent components.
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Point-referenced data

Alternatively, we can integrate out the random effect ω, obtaining as marginal model

Y | β, τ2 ∼ N(Xβ, σ2H(ϕ) + τ2In), where [H(ϕ)]ij = ρ(||si − sj ||, ϕ),

β ∼ N(b0,Λ0),

θ = (σ2, ϕ, τ2) ∼ π(σ2, ϕ, τ2).

Finally, considering the support of the parameters in θ, we can consider as priors

σ2 ∼ IG(aσ , bσ),

τ2 ∼ IG(aτ , bτ ),

ϕ ∼ IG(aϕ, bϕ).

The model can be implemented in STAN, by suitably constructing the

correlation/covariance matrices needed in the spatial residual term (first specification)

or in the marginal distribution of the data (second specification).
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Point-referenced data

As usual in spatial analysis, one of our main scopes is to perform kriging. In a

Bayesian framework, kriging is nothing but Bayesian prediction.

We want to predict the response Y0 at a new location s0, given a vector of predictors

x0 = x(s0), by computing the predictive distribution

f (y0 | x0, y ,X) =

∫
Rp×R3

+

L(y0,β,θ | x0, y ,X)dβdθ

=

∫
Rp×R3

+

L(y0 | x0,β,θ, y ,X)π(β,θ | y ,X)dβdθ

where π(β,θ | y ,X) denotes the posterior distribution of interest.

• The previous integral can be solved numerically, starting from an MCMC output.

• In practice, we can compute directly the quantity we need in STAN.

• Under the Gaussian model, we can write explicitly L(y0 | x0,β,θ, y ,X).
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Point-referenced data

Recall that, from standard multivariate Gaussian proprieties, if(
Y1

Y2

)
∼ N

((
µ1

µ2

)
,

[
Ω11 Ω12

Ω21 Ω22

])

with Ω12 = Ω⊺
21. Then, the conditional distribution of Y1 | Y2 is still a Gaussian

distribution, with mean and covariance matrix

E[Y1 | Y2] = µ1 +Ω12Ω
−1
22 (Y2 − µ2)

var(Y1 | Y2) = Ω11 − Ω12Ω
−1
22 Ω21

In our framework, we have Y1 = Y (s0), Y2 = y . Then, we have

Ω11 = σ2 + τ2, Ω12 = γ⊺, Ω22 = σ2H(ϕ) + τ2In,

where γ⊺ = (σ2ρ(d01, ϕ), . . . , σ2ρ(d0n, ϕ)). Hence,

E[Y0 | y ] = x⊺
0 β + γ⊺(σ2H(ϕ) + τ2In)

−1(y −Xβ)

var(Y1 | Y2) = σ2 + τ2 − γ⊺(σ2H(ϕ) + τ2In)
−1γ
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Areal data

The second type of spatial data we are considering consists of areal data. We recall

that areal data Y (s), s ∈ D, consists of a spatial data where the domain D is

partitioned into a finite number of areal units.

Hence, our realizations are Y = (Y1, . . . ,Yn), continuous, binary, count, etc.,

associated to n distinct areal units S = {S1, . . . ,Sn}.

We also have a n × n matrix, here called W , that describes how different areas are, in

some way, connected. Typically, we set wii = 0, i = 1, . . . , n, i.e. an observation is not

connected with itself. Further, we have

→ wij = 1 if the ith and the jth area share at least a common boundary.

→ wij could reflect the distance among units, e.g. a decreasing function of

intercentroidal distance.

W is usually a symmetric matrix, and it can be marginally standardized by defining

w̃ij =
wij

wi+
, wi+ =

n∑
j=1

wij

Is not symmetric anymore, but is a stochastic matrix, with row summing up to 1.
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Point-referenced data

34.0°N

34.5°N

35.0°N

35.5°N

36.0°N

36.5°N

84°W 82°W 80°W 78°W 76°W

Sudden infant deaths in North Carolina for 1974-78. We also have access to other

information for each specific areas, such as number of births and number of non-white

birth.
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Point-referenced data

The corresponding graph connecting different areas, and defining the adjacency matrix.

15/24



Areal data

Typical quantities to measure the strength of spatial association among different areal

units are the following.

• Moran’s I, which is defined as

I =
n
∑n

i=1

∑n
j=1 wij (yi − ȳ)(yj − ȳ)

(
∑

i ̸=j wij )
∑n

i=n(yj − ȳ)2

which is the analogue of lagged autocorrelation for time series. By construction,

is not constricted in [−1, 1].

• Geary’s C, which is defined as

C =
(n − 1)

∑n
i=1

∑n
j=1 wij (yi − ȳ)2

2(
∑

i ̸=j wij )
∑n

i=n(yj − ȳ)2

The C index is never negative. Small values (between 0 and 1) indicate positive

spatial association.
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Areal data

A relevant issue here is how we can specify a joint distribution, playing the role of the

likelihood term, for Y = (Y1, . . . ,Yn)⊺, that incorporates also the spatial dependence

we across areas.

A possible strategy that we can explore is to build up the joint distribution starting

from the full conditional distributions of each observation, giving all the others, i.e.

L(Yi | Y−i ), where Y−i denotes all the observations discarding the ith term.

Problem: the joint distribution can be determined by the product of the full

conditionals, but the joint distribution can be improper.

Instead of considering the whole support, we denote by ∂i a generic neighborhood of i .

Suppose we specify the full conditionals in a local fashion, by considering

L(Yi | Y−i ) = L(Yi | Yj ∈ ∂i ), i = 1, . . . , n.

By specify the full conditionals in the previous way, we identify a unique joint

distribution, while we are inside the Markov random field domain.

Conditionally autoregressive (CAR) models are an example of Marov random fields,

where the joint distribution is a Gibbs distribution, i.e. it exists but it can be improper.
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Areal data

We introduce the CAR case with continuous Yi s, Gaussian distributed. The same

framework can be extended more in general to exponential family models. We then

set, for each single observation, a model of the form

Yi | y−i ∼ N

∑
j ̸=i

bijyj , τ
2
i

 , i = 1, . . . , n.

These full conditional are compatible, and we obtain as joint distribution

f (y1, . . . , yn) ∝ exp

{
−
1

2
y⊺D−1(In − B)y

}
,

where [B]ij = bij and D = diag(τ21 , . . . , τ
2
n ).

Ideally, the previous expression suggests us a joint multivariate normal distribution for

Y , with 0 mean and covariance matrix Σ = (In − B)−1D.

But we should be careful, as Σ−1 and hence D−1(In − B) must be symmetric and

nonsingular.
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Areal data

First, to enforce symmetry in D−1(In − B), we should satisfy the following conditions

bij

τ2i
=

bji

τ2j
, i , j = 1, . . . , n.

From the previous, is apparent that B does not need to be symmetric.

From the definition of the Gaussian CAR model, bij relates observation i and j . Hence,

we can return back to our proximity matrix W , which is assumed to be symmetric.

Suppose now that we set bij = wij/wi+ and τ2i = τ2/wi+. Then the previous is

satisfied since W is symmetric and

wijwi+

τ2wi+
=

wjiwj+

τ2wj+
, i , j = 1, . . . , n,

leading to full conditionals of the form

Yi | y−i ∼ N

 n∑
j=1

wij

wi+
yj ,

τ2

wi+

 .
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Areal data

From the previous full conditionals, the joint distribution we obtain takes form

f (y1, . . . , yn) ∝ exp

(
−

1

2τ2
y⊺(Dw −W )y

)
,

where Dw is a diagonal matrix with [Dw ]ii = wi+.

Secondly, we can note a second aspect. Unfortunately, within the previous

construction we have

(Dw −W )1 = 0,

hence (Dw −W ) = Σ−1 is singular, so that Σ does not exist.

Note that, while for Σ singular we do not have a density function, but a distribution

that lives in a lower dimensional space, when Σ−1 is singular we do have a density

function, but not integrable, hence improper.

With some algebra, the previous density function can be rewritten as

f (y1, . . . , yn) ∝ exp

−
1

2τ2

∑
i ̸=j

wij (yi − yj )
2

 ,

The improperty is still apparent from the previous, we can add any constant to all the

Yi s, and the previous is unaffected. However, it can still be used as improper model.

The previous is usually referred to as intrinsically autoregressive (IAR) model. 20/24



Areal data

A slight variation of the previous model gives us a proper distribution. We redefine

Σ−1 = (Dw − ρW ), by suitably choosing ρ such that Σ−1 is nonsingular.

The nonsingularity is guaranteed by setting ρ ∈ (1/λ(1), 1/λ(n)), where

λ(1) < λ(2) · · · < λ(n) are the ordered eigenvalues of D
1/2
w WD

−1/2
w .

Moreover, since tr(D
1/2
w WD

−1/2
w ) = 0 =

∑n
i=1 λ(i), then we have λ(1) < 0, λ(n) > 0

and 0 being in the set of interest (1/λ(1), 1/λ(n)).

Simpler bounds can be alternatively obtained by looking at the scaled matrix we

defined above, W̃ = diag(1/w1+, . . . , 1/wn+)W . Such a matrix is not symmetric, but

is row stochastic (i.e. all of its rows sum to 1).

Then, Σ−1 can be written as M−1(In − αW̃ ), where M is diagonal. Further, if

|α| < 1, then (In − αW̃ ) is nonsingular.
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Areal data

Hence, under the first constrain, with Σ−1 = (Dw − ρW ), with W symmetric matrix,

we have

Yi | y−i ∼ N

ρ
n∑

j=1

wij

wi+
yj ,

τ2

wi+

 , i = 1, . . . , n.

Typically, we set ρ ∈ (0, 1). For the boundary values, we have the following.

• If ρ = 0, then

Yi
iid∼ N(0, τ2/wi+), i = 1, . . . , n.

• If ρ = 1, then we are back to the improper intrinsic CAR model.

Usually we set a prior on ρ.

→ A prior with mass near to 1 encourages spatial association among different areas.

The model can be used directly as distribution for the data, or can be combined in

more complex models where the spatial association is dictated by a latent parameter

level.

22/24



Areal data

In a general setting, we consider

• S = {S1, . . . , Sn} areal units.

• Y = (Y1, . . . ,Yn)⊺ response variables.

• O = {O1, . . . ,On} offsets, additional information that we have on the areal units.

The spatial pattern in the response is modelled by

• X a matrix of covarites, where x⊺
i = (xi1, . . . , xip) is the covariate vector

associated to the ith area.

• A set of random effects ϕ = {ϕ1, . . . , ϕn}.

We consider a generic case arising from GLMM. The model specification is given by

Yi | µi
ind∼ f (yi | µi , ν

2), i = 1, . . . , n,

g(µi ) = x⊺
i β + ϕi + Oi , i = 1, . . . , n,

β ∼ N(b0,Λ0),

ν2 ∼ IG(aν , bν),

(ϕ1, . . . , ϕn) ∼ CAR(W , ρ, τ2),

ρ ∼ Beta(aρ, bρ),

τ2 ∼ IG(aτ , bτ ).

23/24



Areal data

Regarding specific distributional assumption for f (yi | µi , ν
2), we can assume the usual

ones.

• Gaussian, Yi ∼ N(µi , ν
2) and µi = x⊺

i β + ϕi + Oi .

• Bernoulli, Yi ∼ Be(θi ) and

µi = log(θi/(1− θi )) = x⊺
i β + ϕi + Oi .

• Poisson, YI ∼ Poi(|mui ) and log(µi ) = x⊺
i β + ϕi + Oi .

The offset is needed in case we want to adjust what we observe on some feature of the

area, such as the dimension. Suppose for example that we are interested into model

rates, but we observe counts. For instance, suppose we observe a count Y in an area

with surface O. Our model is a Poisson with E[Y | x] = µx , but we are interested in

log
µx

O
= β0 + β1x =⇒ logµx = log(O) + β0 + β1x .

Then log(O) is the corresponding offset.
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